

THERMODYNAMICS (ME305PC)

COURSE PLANER

VI. COURSE OVERVIEW:

This course provides an introduction to the most powerful engineering principles you will ever learn - Thermodynamics: the science of transferring energy from one place or form to another place or form. We will introduce the tools you need to analyze energy systems from solar panels, to engines, to insulated coffee mugs. More specifically, we will cover the topics of mass and energy conservation principles; first law analysis of control mass and control volume systems; properties and behavior of pure substances; and applications to thermodynamic systems operating at steady state conditions.

VII. PREREQUISITE(S):

The knowledge of following subjects is essential to understand the subject:

- 1. Physics
- 2. Knowledge of Differential equations

VIII. COURSE OBJECTIVES:

The objectives of the course are to enable the student

- To understand the basic definitions and terminology from the thermodynamics point of view.
- To be able to analyse the significance of thermodynamic air standard and vapor cycles.
- To be able to understand concept of entropy and its significance in real situations.
- To be able to understand the properties of pure substances such as ideal gas and steam and mixture of different gases.
- To be able to understand the properties of moist air "psychometric".

SI. NO	Description	Bloom's Taxonomy level
C01	Able to understand the basic concepts which are useful in calculation of energy interactions	Knowledge, Understand(Level1 Level2)
CO2	Able to understand principle of thermometry and different thermometers	Knowledge, Understand(Levell Level2) and applica
СО3	Able to apply simple energy balance equations for closed and open system by understanding I st law of thermodynamics	Knowledge, Understand(Level 1, Level2) and application L3

IX. COURSE OUTCOMES

CO4	Able to formulate true efficiency of a cyclic heat engines and heat pumps.	Knowledge, Understand(Level 1, Level2) and application L3
CO5	Understand the properties of pure substance with phase change which are useful in power plants.	Knowledge, Understand(Level 1, Level2) and application L3
CO6	Able to apply the simple principles of psychometric to evaluate the air conditioning principles.	Knowledge, Understand(Level 1, Level2) and application L3

X. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	1	Assignments
PO2	Problem analysis: Identify, formulate, review research literature, and analyze engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Assignments/ exams
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	3	Assignments/ exams
PO4	Conduct investigations of complex problems : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Assignments
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2	-
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	2	-
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for	2	-

	k k k k k k k k k k k k k k k k k k k		
	sustainable development.		
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	3	-
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	2	Projects
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	Seminars
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	3	Projects
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	1	Assignments' /Exams

VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Level	Proficiency assessed by
PSO1	The student will be able to apply the knowledge of Mathematics, Sciences and engineering fundamentals to formulate, analyze and provide solutions for the problems related to Mechanical engineering and communicate them effectively to the concerned.	2	Assignments
PSO2	Design mechanical systems in various fields such as machine elements, thermal, manufacturing, industrial and inter-disciplinary fields by using various engineering/technological tools to meet the mercurial needs of the industry and society at large.	2	Assignments
PSO3	The ability to grasp the latest development, methodologies of mechanical engineering and posses competent knowledge of design process, practical proficiencies, skills and knowledge of programme and developing ideas towards research.	3	-

VII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

					Progr	am Ou	tcome	s (PO's	s)			
CO's				PO	PO		PO	PO	PO	PO1	PO1	
	PO1	PO2	PO3	4	5	PO6	7	8	9	0	1	PO12
CO1	3	2	3	2	2			3		2		3
CO2	3	2	3	2	2			2		1		3

CO3	3	3	3	2	2	 	1	X.	2	 2
CO4	1	2	2	1	2	 	3		2	 3
CO5	3	3	3	2	1	 	3		1	 3
CO6	2	3	3	2	3	 	3		2	 1
Average	2.5	2.5	2.8	1.8	2	 	2.5		1.6	 2.5

Program Specific Outcomes (PSO's)

CO's	PSO1	PSO2	PSO3
CO1	2	1	1
CO2	2	1	1
CO3	3	1	1
CO4	2	1	1
CO5	2	1	1
CO6	2	1	1
Average	2.16	1	1

VIII. SYLLABUS:

Unit – I	Introduction: Desig Concentry System Control Volume Symounding											
	Introduction: Basic Concepts: System, Control Volume, Surrounding,											
	Boundaries, Universe, Types of Systems, Macroscopic and Microscopic											
	viewpoints, Concept of Continuum, Thermodynamic Equilibrium, State, Property, Process, Exact & Inexact Differentials, Cycle – Reversibility –											
	Quasi - static Process, Irreversible Process, Causes of Irreversibility -											
	Energy in State and in Transition, Types, Displacement & Other forms of											
	Work, Heat, Point and Path functions, Zeroth Law of Thermodynamics											
	Concept of Temperature – Principles of Thermometry – Reference Points											
	Const. Volume gas Thermometer – Scales of Temperature, Ideal Gas Scale											
Unit – II	PMM I - Joule's Experiments – First law of Thermodynamics – Corollaries											
	- First law applied to a Process - applied to a flow system - Steady Flow											
	Energy Equation. Limitations of the First Law – Thermal Reservoir, Heat											
	Engine, Heat pump , Parameters of performance, Second Law of											
	Thermodynamics, Kelvin-Planck and Clausius Statements and their											
	Equivalence / Corollaries, PMM of Second kind, Carnot's principle, Carnot											
	cycle and its specialties, Thermodynamic scale of Temperature, Clausius											
	Inequality, Entropy, Principle of Entropy Increase – Energy Equation,											
	Availability and Irreversibility - Thermodynamic Potentials, Gibbs and											
	Helmholtz Functions, Maxwell Relations – Elementary Treatment of the											
	Third Law of Thermodynamics											

Pure Substances, p-V-T- surfaces, T-S and h-s diagrams, Mollier Charts, Phase Transformations – Triple point at critical state properties during change of phase, Dryness Fraction – Clausius – Clapeyron Equation Property tables. Mollier charts – Various Thermodynamic processes and energy Transfer – Steam Calorimetry. Perfect Gas Laws – Equation of State, specific and Universal Gas constants various Non-flow processes, properties, end states, Heat and Work Transfer, changes in Internal Energy – Throttling and Free Expansion Processes – Flow processes
Deviations from perfect Gas Model – Vader Waals Equation of State – Compressibility charts – variable specific Heats – Gas Tables Mixtures of perfect Gases – Mole Fraction, Mass friction Gravimetric and volumetric Analysis – Dalton's Law of partial pressure, Avogadro's Laws of additive volumes – Mole fraction, Volume fraction and partial pressure, Equivalent Gas const. And Molecular Internal Energy, Enthalpy, sp. Heats and Entropy of Mixture of perfect Gases and Vapour, Atmospheric air - Psychrometric Properties – Dry bulb Temperature, Wet Bulb Temperature, Dew point Temperature, Thermodynamic Wet Bulb Temperature, Specific Humidity, Relative Humidity, saturated Air, Vapour pressure, Degree of saturation –

Adiabatic Saturation, Carrier's Equation – Psychrometric chart.Unit - VPower Cycles: Otto, Diesel, Dual Combustion cycles, Sterling Cycle,
Atkinson Cycle, Ericsson Cycle, Lenoir Cycle – Description and
representation on P–V and T-S diagram, Thermal Efficiency, Mean
Effective Pressures on Air standard basis – comparison of Cycles.
Refrigeration Cycles:
Brayton and Rankine cycles – Performance Evaluation – combined cycles,
Bell-Coleman cycle, Vapour compression cycle-performance Evaluation.

SUGGESTED BOOKS/RESOURCES:

Text books:

Unit – III

Unit - IV

- 1. Engineering Thermodynamics / PK Nag /TMH, 5th Edition
- 2. Thermodynamics An Engineering Approach by Cengel & Boles , McGraw Hill 8th Edition

Reference Books:

- 1. Engineering Thermodynamics/DPMishra/Cengage Learning/Second impression 2012
- 2. Engineering Thermodynamics/E Rathakrishnan/PHI/Second Edition/2013
- 3. Thermodynamics J.P.Holman / McGrawHill
- 4. Engineering Thermodynamics Jones & Dugan
- 5. Engineering Thermodynamics/P.Chattopadhyay/Oxford Higher Education/Revised First Edition
- 6. Thermodynamics & Heat Engines Yadav Central Book Depot, Allahabad.

NPTEL WEB COURSE:

http://nptel.ac.in/courses/112105123/ http://nptel.ac.in/courses/112105123/1 http://nptel.ac.in/courses/112105123/2 http://nptel.ac.in/courses/112105123/3 http://nptel.ac.in/courses/112105123/4 http://nptel.ac.in/courses/112105123/5 http://nptel.ac.in/courses/112105123/6

NPTEL VIDEO COURSE

https://youtu.be/9GMBpZZtjXM https://youtu.be/xQwi9fveGTQ https://youtu.be/sUDfpFD0xX4 https://youtu.be/xTpmdeq25YI

GATE SYLLABUS:

Basic Concepts: Continuum, macroscopic approach, thermodynamic system (closed and open or control volume); thermodynamic properties and equilibrium; state of a system, state diagram, path and process; different modes of work; Zeroth law of thermodynamics; concept of temperature; heat.

First Law of Thermodynamics: Energy, enthalpy, specific heats, first law applied to systems and control volumes, steady and unsteady flow analysis.

Second Law of Thermodynamics : Kelvin –Planck and Clausius statements, reversible and irreversible processes, Carnot theorems, thermodynamic temperature scale, Clausius inequality and concept of entropy, principle of increase of entropy; availability and irreversibility.

Properties of Pure Substances : Thermodynamic properties of pure substances in solid, liquid and vapor phases, P-V - T behaviour of simple compressible substances, phase rule, thermodynamic property tables and charts, ideal and real gases, equations of state, compressibility chart.

Thermodynamic Relations: T – ds relations, Maxwell equations, Joule – Thomson coefficient, coefficient of volume expansion, adiabatic and isothermal compressibilities, Clapeyron equation.

Thermodynamic Cycles: Carnot vapor power cycle, ideal Rankine cycle, Rankine Reheat cycle, Air standard Otto cycle, Air standard Diesel cycle, Air – standard Brayton cycle, Vapor – compression refrigeration cycle.

Ideal Gas Mixtures: Dalton's and amagat's laws, calculations of properties, air – water vapor mixtures and simple thermodynamic processes involving them.

IX: COURSE PLAN

Lecture No.	Unit No.	Date	Topics to be covered	Content to be covered under each topic	Link for PPT	Link for PDF	Link for Small Projects/ Numericals(if any)	Course learning outcomes	Teaching Methodo logy	Reference
1			Preamble to the course	Introduction to Thermodyna mics	<u>https://tin yurl.com/</u> cjwt78xu	<u>https://ti</u> <u>nyurl.co</u> <u>m/47vs</u> <u>mdrm</u>	https://www. skyfilabs.co m/project- ideas/latest- projects- based-on- Thermodyna mics	Understa nd	PPT, CHALK N BOARD, VIDEOS	Engineering Thermodynam ics / PK Nag /TMH, 5th Edition
2			Basic Concepts	System, Control Volume, Surrounding, Boundaries, Universe, Types of Systems	<u>https://tin yurl.com/</u> cjwt78xu	<u>https://ti</u> <u>nyurl.co</u> <u>m/47vs</u> <u>mdrm</u>	https://www. skyfilabs.co m/project- ideas/latest- projects- based-on- Thermodyna mics	Explain	PPT, CHALK N BOARD, VIDEOS	Engineering Thermodynam ics / PK Nag /TMH, 5th Edition
3	Ι		Macroscopic and Microscopic viewpoints,	Macroscopic and Microscopic viewpoints, Concept of Continuum,	<u>https://tin yurl.com/</u> cjwt78xu	<u>https://ti</u> <u>nyurl.co</u> <u>m/47vs</u> <u>mdrm</u>	https://www. skyfilabs.co m/project- ideas/latest- projects- based-on- Thermodyna mics	Understa nd	PPT, CHALK N BOARD, VIDEOS	Engineering Thermodynam ics / PK Nag /TMH, 5th Edition
4	, .	Thermodyr mic Equilibriun State, Property, Process		Thermodyna mic Equilibrium, State, Property, Process	<u>https://tin yurl.com/</u> cjwt78xu	<u>https://ti</u> <u>nyurl.co</u> <u>m/47vs</u> <u>mdrm</u>	https://www. skyfilabs.co m/project- ideas/latest- projects- based-on- Thermodyna mics	Explain	PPT, CHALK N BOARD, VIDEOS	Engineering Thermodynam ics / PK Nag /TMH, 5th Edition
5							STUDENT P	PT		

					•	The religious of the pro-	ES .	
6	Exact & Inexact Differentials,	Exact & Inexact Differentia ls,	<u>https://tinyu</u> <u>rl.com/cjwt</u> <u>78xu</u>	<u>https://tinyu</u> <u>rl.com/47vs</u> <u>mdrm</u>	https://www.s kyfilabs.com/p roject- ideas/latest- projects- based-on- Thermodynam ics	Stud y	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
7	Cycle – Reversibility – Quasi – static Process, Irreversible Process,	Cycle – Reversibili ty – Quasi – static Process, Irreversibl e Process,	<u>https://tinyu</u> <u>rl.com/cjwt</u> <u>78xu</u>	<u>https://tinyu</u> <u>rl.com/47vs</u> <u>mdrm</u>	https://www.s kyfilabs.com/p roject- ideas/latest- projects- based-on- Thermodynam ics	Appl icati on	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
8	Causes of Irreversibilit y – Energy in State and in Transition,	Causes of Irreversibil ity – Energy in State and in Transition,	<u>https://tinyu</u> <u>rl.com/cjwt</u> <u>78xu</u>	<u>https://tinyu</u> <u>rl.com/47vs</u> <u>mdrm</u>	https://www.s kyfilabs.com/p roject- ideas/latest- projects- based-on- Thermodynam ics	Und ersta nd	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
9	Work & Heat	Types, Displacem ent & Other forms of Work, Heat, Point and Path functions,	<u>https://tinyu</u> <u>rl.com/cjwt</u> <u>78xu</u>	<u>https://tinyu</u> <u>rl.com/47vs</u> <u>mdrm</u>	https://www.s kyfilabs.com/p roject- ideas/latest- projects- based-on- Thermodynam ics	Und ersta nd	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
10		,		ST	UDENT PPT	1	1	<u> </u>
	Zeroth Law	Zeroth Law	https://tinyu		r https://www	Und	PPT,	
11	of	of	rl.com/cjwt	1.com/47vs1	n <u>.skyfilabs.co</u>	ersta	CHA	
	Thermodyna	Thermodyn	<u>78xu</u>	<u>drm</u>	m/project-	nd	LK N	

		mics	amics			ideas/latest- projects- based-on- Thermodyna mics		BOA RD, VIDE OS	
12		Concept of Temperatur	Concept of Temperatur e – Principles of Thermomet ry – Reference Points – Const. Volume gas Thermomet er – Scales of Temperatur e, Ideal Gas	<u>https://tinyu</u> <u>rl.com/cjwt</u> <u>78xu</u>	<u>https://tinyur</u> <u>l.com/47vsm</u> <u>drm</u>	https://www .skyfilabs.co m/project- ideas/latest- projects- based-on- Thermodyna mics	Appl icati on	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
13		PMM I - Joule's Experiment	Concept of PMM I - Joule's Experiment s	rl.com/74ku	<u>https://tinyur l.com/4zmjj</u> <u>k2b</u>	https://mech anical.mini- projects.in/c /thermodyna mics- projects	Stud y	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
14		First law of Thermodyn mics – Corollaries	I I nermoovn	rl com/74ku	<u>https://tinyur</u> <u>l.com/4zmjj</u> <u>k2b</u>	https://mech anical.mini- projects.in/c /thermodyna mics- projects	Expl ain	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
15	Π				STU	DENT PPT			
16		First law applied to a Process – applied to a flow system	a Process – applied to a flow system –	nttps://tinyurl com/74kub9 sy	<u>https://tinyur</u> <u>1.com/4zmjj</u> <u>k2b</u>	https://mech anical.mini- projects.in/c /thermodyna mics- projects	Expl ain	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
17		Steady Flow Energy Equation	n and .	<u>https://tinyurl</u> com/74kub9 <u>xy</u>	https://tinyur l.com/4zmjj k2b	https://mech anical.mini- projects.in/c	Stud y	PPT, CHA LK N	Engineering Thermodynamics / PK Nag /TMH,

							EG		
							WFARTERS WILLIE DAT	ED EDUCATION	
		n of Steady Flow Energy Equation				/thermodyna mics- projects		BOA RD, VIDE OS	5th Edition
18	Limitations of the First Law	Definatio n of Thermal Reservoir , Heat Engine, Heat pump , Paramete rs of performa nce, Statement s and their Equivale nce / Corollari es,	<u>.com/</u> xy	/74kub9	<u>https://tinyur l.com/4zmjj</u> <u>k2b</u>	https://mech anical.mini- projects.in/c /thermodyna mics- projects	Expl ain	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
19	Second Law of Thermodyna mics,	Definatio n of Second Law of Thermod ynamics, Kelvin- Planck and Clausius		/74kub9	<u>https://tinyur 1.com/4zmjj</u> <u>k2b</u>	https://mech anical.mini- projects.in/c /thermodyna mics- projects	Und ersta nd	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
20			•	•	STU	JDENT PPT		•	
21	PMM of Second kind, Carnot's principle, Carnot cycle and its specialties,	Concept of PMM of Second kin Carnot's principle, Carnot cyc and its specialties,	hd, $\frac{h}{\underline{u}}$	<u>ttps://tiny</u> rl.com/74 ub9xy		https://mecha nical.mini- projects.in/c/t hermodynami cs-projects	Expl ain	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
22	Thermodyna mic scale of Temperature, Clausius Inequality, Entropy,	Concept of Thermodyn mic scale of Temperatu Clausius Inequality,	f na <u>hi</u> ure, <u>k</u>	ttps://tiny rl.com/74 ub9xy	https://tiny	https://mecha nical.mini- projects.in/c/t hermodynami cs-projects	Stud y	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition

F)

T	STA	
EM		
WFARTING VAL	M BASED EDUCATION	

		-		-				R	
		Principle of Entropy Increase	Entropy, Principle of Entropy Increase						
23		Energy Equation, Availability and Irreversibilit y – Thermodyna mic Potentials		<u>https://tiny</u> url.com/74 <u>kub9xy</u>	<u>https://tiny</u> url.com/4z mjjk2b	https://mecha nical.mini- projects.in/c/t hermodynami cs-projects	Expl ain	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
24		Gibbs and Helmholtz Functions, Maxwell Relations –	Defination and Derivation of Gibbs and Helmholtz Functions, Maxwell Relations –	https://tiny url.com/74 kub9xy	<u>https://tiny</u> <u>url.com/4z</u> <u>mjjk2b</u>	https://mecha nical.mini- projects.in/c/t hermodynami cs-projects	Expl ain	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
25			STUDENT PF	Т					
26		Elementary Treatment of the Third Law of Thermodyna mics	the Third Law of	https://tiny url.com/74 kub9xy	<u>https://tiny</u> <u>url.com/4z</u> <u>mjjk2b</u>	https://mecha nical.mini- projects.in/c/t hermodynami cs-projects	Und ersta nd	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK
27		Pure Substances, p-V-T- surfaces, T-S and h-s diagrams,	Concept of Pure Substances, p-V-T- Surfaces, T-S and h-s diagrams,	https://tiny url.com/kf 2fj3xe	<u>https://tiny</u> <u>url.com/e5</u> <u>ynujwz</u>	https://project abstracts.com /tag/thermod ynamics		PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
28	II I	Mollier Charts, Phas Transformati ons –		<u>https://tiny</u> <u>url.com/kf</u> <u>2fj3xe</u>	https://tiny url.com/e5 ynujwz	https://project abstracts.com /tag/thermod ynamics		PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition

						E		
						MI BULING CARTRAPTION	ED EDUCATION	
29	Triple point at critical state properties uring change of phase, DrynesFracti on	Concept of Triple point at critical state properties during change of phase, Dryness Fraction –	<u>https://tiny</u> <u>url.com/kf</u> <u>2fj3xe</u>	<u>https://tiny</u> <u>url.com/e5</u> <u>ynujwz</u>	https://project abstracts.com /tag/thermod ynamics	Stud y	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
30				ST	UDENT PPT		•	
31	Clausius – Clapeyron Equation Property tables.	Defination of Clausius – Clapeyron Equation Property tables.	<u>https://tiny</u> <u>url.com/kf</u> <u>2fj3xe</u>	https://tiny url.com/e5 ynujwz	https://project abstracts.com /tag/thermod ynamics			Engineering Thermodynamics / PK Nag /TMH, 5th Edition
32	Mollier charts – Various Thermodyna mic processes and energy Transfer – Steam Calorimetry.	Concept of Mollier charts – Various Thermodyna mic processes and energy Transfer – Steam Calorimetry.	<u>https://tiny</u> <u>url.com/kf</u> <u>2fj3xe</u>	<u>https://tiny</u> <u>url.com/e5</u> <u>ynujwz</u>	https://project abstracts.com /tag/thermod ynamics			Engineering Thermodynamics / PK Nag /TMH, 5th Edition
33	Perfect Gas Laws – Equation of State, specific and Universal Gas constants –	Concept of Perfect Gas Laws – Equation of State, specific and Universal Gas constants –	<u>https://tiny</u> <u>url.com/kf</u> <u>2fj3xe</u>	<u>https://tiny</u> <u>url.com/e5</u> <u>ynujwz</u>	https://project abstracts.com /tag/thermod ynamics		PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition

F)

							UNFARTING WILLIE DAS	ED ETHICATION	
34		various Non- flow processes, properties, end states, Heat and Work Transfer, changes in Internal Energy –	Concept of various Non- flow processes, properties, end states, Heat and Work Transfer, changes in Internal Energy –	<u>https://tiny</u> <u>url.com/kf</u> <u>2fj3xe</u>	<u>https://tiny</u> <u>url.com/e5</u> <u>ynujwz</u>	https://project abstracts.com /tag/thermod ynamics	Appl icati on	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
35					ST	UDENT PPT			
36		Heat and Work Transfer, changes in Internal Energy –	Concept of Heat and Work Transfer, changes in Internal Energy –	https://tiny url.com/kf 2fj3xe	https://tiny url.com/e5 ynujwz	https://project abstracts.com /tag/thermod ynamics	Appl icati on	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
37		Throttling and Free Expansion Processes – Flow processes	Concept ofThrottling and Free Expansion Processes – Flow processes	https://tiny url.com/kf 2fj3xe	https://tiny url.com/e5 ynujwz	https://project abstracts.com /tag/thermod ynamics	Expl ain	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
38		Flow processes	Derivation of various Flow processes	https://tiny url.com/kf 2fj3xe	https://tiny url.com/e5 ynujwz	https://project abstracts.com /tag/thermod ynamics			Engineering Thermodynamics / PK Nag /TMH, 5th Edition
39	IV	perfect Gas Model – Vader Waals Equation of State	Deviations from perfect Gas Model – Vader Waals Equation of State	<u>https://tiny</u> <u>url.com/jjk</u> <u>27e5u</u>	<u>https://tiny</u> <u>url.com/4a</u> <u>4wkmpw</u>	https://www.s kyfilabs.com/ project- ideas/latest- projects- based-on- Thermodyna mics			Engineering Thermodynamics / PK Nag /TMH, 5th Edition
40			STUDENT PPT						
41		Compressibil ity charts	Compressibili ty charts – variable specific Heats	https://tiny url.com/jjk 27e5u	<u>https://tiny</u> <u>url.com/4a</u> <u>4wkmpw</u>	https://www.s kyfilabs.com/ project- ideas/latest-	Stud y	PPT, CHA LK N BOA	Engineering Thermodynamics / PK Nag /TMH, 5th Edition

						The state with the	ES	
		– Gas Tables			<u>projects-</u> <u>based-on-</u> <u>Thermodyna</u> <u>mics</u>		RD, VIDE OS	
42	Mixtures of perfect Gases	Mixtures of perfect Gases – Mole Fraction, Mass friction Gravimetric and volumetric Analysis	<u>https://tiny</u> <u>url.com/jjk</u> <u>27e5u</u>		https://www.s kyfilabs.com/ project- ideas/latest- projects- based-on- Thermodyna mics	Expl ain	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
43	Dalton's Law of partial pressure, Avogadro's Laws of additive volumes	Concepts of Dalton's Law of partial pressure, Avogadro's Laws of additive volumes	<u>https://tiny</u> <u>url.com/jjk</u> <u>27e5u</u>		https://www.s kyfilabs.com/ project- ideas/latest- projects- based-on- Thermodyna mics		PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
44	Mole fraction, Volume fraction and partial pressure, Equivalent Gas const.	Concept of Mole fraction, Volume fraction and partial pressure, Equivalent Gas const.	https://tiny url.com/jjk 27e5u		https://www.s kyfilabs.com/ project- ideas/latest- projects- based-on- Thermodyna mics	Expl ain	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
45				ST	UDENT PPT			
46	Molecular Internal Energy, Enthalpy, sp. Heats and Entropy of Mixture of perfect Gases and Vapour, Atmospheric air -	Concept of Molecular Internal Energy, Enthalpy, sp. Heats and Entropy of Mixture of perfect Gases and Vapour, Atmospheric air -	<u>https://tiny</u> <u>url.com/jjk</u> <u>27e5u</u>	<u>https://tinyurl.com/4a4wkmpw</u>	https://www.s kyfilabs.com/ project- ideas/latest- projects- based-on- Thermodyna mics	Stud y	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition

							G		
							No. of View Parts		
47		Psychrometri c Properties	Definations of Dry bulbTemperat ure, Wet Bulb Temperature, Dew point Temperature, Thermodyna mic Wet Bulb Temperature, Specific Humidity, Relative Humidity	<u>https://tiny</u> <u>url.com/jjk</u> <u>27e5u</u>		https://www.s kyfilabs.com/ project- ideas/latest- projects- based-on- Thermodyna mics	Expl ain	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
48		Saturated Air, Vapour pressure, Degree of saturation –	Concept of Saturated Air, Vapour pressure, Degree of saturation –	<u>https://tiny</u> <u>url.com/jjk</u> <u>27e5u</u>	<u>https://tiny</u> <u>url.com/4a</u> <u>4wkmpw</u>	https://www.s kyfilabs.com/ project- ideas/latest- projects- based-on- Thermodyna mics			Engineering Thermodynamics / PK Nag /TMH, 5th Edition
49		Adiabatic Saturation, Carrier's Equation	Concept of Adiabatic Saturation, Carrier's Equation	<u>https://tiny</u> <u>url.com/jjk</u> <u>27e5u</u>		https://www.s kyfilabs.com/ project- ideas/latest- projects- based-on- Thermodyna mics			ering Thermodynamics / PK Nag /TMH, 5th Edition
50					ST	UDENT PPT	•	•	
51		Psychrometri c chart	Psychrometri c chart- Related Problems	<u>https://tiny</u> <u>url.com/jjk</u> <u>27e5u</u>		https://www.s kyfilabs.com/ project- ideas/latest- projects- based-on- Thermodyna mics	Expl ain	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
52	V	Power Cycles	Otto, Diesel, Dual Combustion cycles, Description and representation on P–V and T-S diagram,	<u>https://tiny</u> <u>url.com/v7</u> <u>vd5k55</u>	https://tiny url.com/5b eku3dc	https://mecha nical.mini- projects.in/c/t hermodynami cs-projects	Und ersta nd	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition

						10	ES	
53	Sterling Cycle, Atkinson Cycle, Ericsson Cycle,	Description and representation on P–V and T-S diagram,	<u>https://tiny</u> <u>url.com/v7</u> <u>vd5k55</u>	<u>https://tiny</u> <u>url.com/5b</u> <u>eku3dc</u>	https://mecha nical.mini- projects.in/c/t hermodynami cs-projects	Appl icati on	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
54	Lenoir Cycle – Description and representatio n on P–V and T-S diagram,	Description and representation on P–V and T-S diagram,	<u>https://tiny</u> <u>url.com/v7</u> <u>vd5k55</u>	https://tiny url.com/5b eku3dc	https://mecha nical.mini- projects.in/c/t hermodynami cs-projects	Expl ain	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
60				ST	UDENT PPT			
56	Thermal Efficiency, Mean Effective Pressures on Air standard basis – comparison of Cycles.	Concept and derivation of Thermal Efficiency, Mean Effective Pressures on Air standard basis – comparison of Cycles. Problems	<u>https://tiny</u> <u>url.com/v7</u> <u>vd5k55</u>	<u>https://tiny</u> <u>url.com/5b</u> <u>eku3dc</u>	https://mecha nical.mini- projects.in/c/t hermodynami cs-projects	Stud y	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
57	Refrigeration Cycles	Brayton and Rankine cycles, Performance Evaluation	<u>https://tiny</u> <u>url.com/v7</u> <u>vd5k55</u>	<u>https://tiny</u> <u>url.com/5b</u> <u>eku3dc</u>	https://mecha nical.mini- projects.in/c/t hermodynami cs-projects	Expl ain	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
58	combined cycles, Bell- Coleman cycle,	Working of combined cycles	<u>https://tiny</u> <u>url.com/v7</u> <u>vd5k55</u>	<u>https://tiny</u> <u>url.com/5b</u> <u>eku3dc</u>	https://mecha nical.mini- projects.in/c/t hermodynami cs-projects		PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition

							ES	
59	Bell- Coleman cycle,	Working of Bell-Coleman cycle	https://tiny url.com/v7 vd5k55		https://mecha nical.mini- projects.in/c/t hermodynami cs-projects	icati	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition
60				ST	UDENT PPT			
61	Vapour compression cycle- performance Evaluation.	Working of Vapour compression cycle- performance Evaluation.	https://tiny url.com/v7 vd5k55	https://tiny url.com/5b eku3dc	https://mecha nical.mini- projects.in/c/t hermodynami cs-projects		PPT, CHA LK N BOA RD	
62	Problems	Related Problems	https://tiny url.com/v7 vd5k55		https://mecha nical.mini- projects.in/c/t hermodynami cs-projects	Expl ain	PPT, CHA LK N BOA RD, VIDE OS	Engineering Thermodynamics / PK Nag /TMH, 5th Edition

TEXT BOOKS:

- 1 Engineering Thermodynamics / PK Nag /TMH, 5th Edition
- Thermodynamics An Engineering Approach by Cengel & Boles, McGraw
- ² Hill 8th Edition

REFERENCE BOOKS:

- 1. Engineering Thermodynamics/DPMishra/Cengage Learning/Second impression 2012
- 2. Engineering Thermodynamics/E Rathakrishnan/PHI/Second Edition/2013
- 3. Thermodynamics J.P.Holman / McGrawHill
- 4. Engineering Thermodynamics Jones & Dugan
- 5. Engineering Thermodynamics/P.Chattopadhyay/Oxford Higher Education/Revised First Edition
- 6. Thermodynamics & Heat Engines Yadav Central Book Depot, Allahabad

X. QUESTION BANK (JNTUH) DESCRIPTIVE QUESTIONS: Unit-I

S. N o.	Question	Blooms Taxonomy Level	Cours e Outco me
	Differentiate the system, surroundings and boundary Explain in detail.	Analyze	1

		ZARS	
2	Classify the types of systems, explain the energy conversion in them.	Understand	1
3	Explain in detail the macroscopic and microscopic study of thermodynamics?	Understand	1
4	Explain the importance of concept of continuum in thermodynamic approach?.	Understand	1
5	Explain thermodynamic equilibrium in detail?.	Understand	1
6	Differentiate thermal equilibrium and thermodynamic equilibrium, explain.	Understand	2
7	Explain, the role of chemical equilibrium in thermodynamic equilibrium?	Understand	1
8	When a stationary mass of gas was compressed without friction at constant pressure, its initial state of 0.4m ³ and 0.105MPa was found to change to final state of 0.20m ³ and 0.105MPa. There was a transfer of 42.5kJ of heat from the gas during the process. Determine the change in internal energy of the gas?	Analyse	2
9	Two thermometers one centigrade and other Fahrenheit are immersed in a fluid, after the thermometers reached equilibrium with the fluid, it is noted that both the thermometers indicate the same numerical values. Find that the identical numerical values shown by the thermometers? Determine the corresponding temperature of the fluid, express in degrees Kelvin and degrees Rankine?	Analyse	2
1 0	A piston cylinder device operates 1kg of fluid at 20atm pressure with initial volume is 0.04 m ³ . Fluid is allowed to expand reversibly following pV ^{1.45} =C. So that the volume becomes double. The fluid is cooled at constant pressure until the piston comes back. Determine the work done in each process?	Analyse	2

Unit-II

CN		Blooms	Course
S.No	Question	Taxonomy	Outcom
•		Level	e
1	Explain the limitations of First law of thermodynamics in detail?	Understand	3
2	Explain the Joule's experiment with a neat sketch?	Understand	2
3	Sketch the constant volume gas thermometer and explain?	Apply	2
4	List the scales of temperature and explain in detail?	Understand	2
5	Compare the first law of thermodynamics with its corollaries?	Analyze	3
6	Explain how the first law of thermodynamics applied to a process?	Understand	3
7	Explain the Steady state flow equation ?	Understand	2
8	Explain the second law of thermodynamics with suitable sketches?	Understand	3
9	Write the Kelvin-Plank statement and explain with an example?	Understand	3
10	State the Third law of thermodynamics? Explain the importance	Remember	3
11	Discuss the equivalent of Kelvin-Plank and Clausius statements?	Understand	2
12	1kg of ice at -5°C expose to the atmosphere which, is at 20°C. The ice melts and comes into thermal equilibrium with the atmosphere. Determine the entropy increase of Universe. Cp for ice is 2.039 kJ/kgK, and the enthalpy of fusion of ice is 333.3kJ/kg.	Analyze	3
13	Heat flows from a hot reservoir at 800K to another reservoir at 250K.If the entropy change of overall process is 4.25kJ/K, Compare calculation for the heat flowing out of the high temperature reservoir?	Analyze	3

Unit-III

S.N o.	Question	Blooms Taxonomy Level	Cours e Outco me
1	Define Pure Substance and what do you understand by a saturation stage?	Understand	5
2	Draw the phase diagram on p-v diagrams with water as pure substance?	Understand	5
3	Explain the concept of p-v-T surface? Represent on p-T coordinates?	Understand	5
4	Explain the process of free expansion?	Understand	5
5	Explain the process of Throttling?	Understand	5
6	Explain Mollier chart by representing all the properties on it? Understand		5
7	State the degree of superheat and degree of sub cooling?	Understand	5
8	A vessel of volume 0.04m ³ contains a mixture of saturated water and saturated steam at a temperature of 250°C. The mass of the liquid present is 9kg. Find the pressure, mass, specific volume, enthalpy, entropy and internal energy?	Analyze	5
9	Determine the enthalpy and entropy of steam and the pressure is 2MPa and the specific volume is 0.09m ³ /kg.	Analyze	5
10	Saturated steam has entropy of 6.76kJ/kg K. Determine the pressure, temperature, specific volume, enthalpy and internal energy?	Analyze	3

Unit-IV

S.N o.	Question	Blooms Taxonomy Level	Cours e Outco me
1	State Dalton's law of partial pressures?	Understand	4
2	Explain the equation of state?	tate? Understand 5	
3	Derive the changes in internal energy during a process with variable specific heats.	Understand	3
4	Derive the changes in enthalpy during a process with variable specific heats.	Understand	5
5	Explain On what coordinates compressibility charts can be drawn	Understand	3
6	List the molar specific heats, explain?	Understand	3
7	Derive the expression for internal energy? Underst		3
8	Define mole fraction?	Understand	5
9	The analysis by weight of a perfect gas mixture at 20°C and 1.3bar is $10\%O_2$, $70\%N_2$, $15\%CO_2$ and $5\%CO$. For a reference state of $0°C$ and 1bar, determine partial pressure of the constituent and gas constant of mixture.	Analyze	6
10	Air at 20 ^o C,40% RH is mixed adiabatically with air at 40 ^o C, 40% RH in the atio of 1kg of the former with 2kg of later(on dry basis). Find the final condition of air?	Analyze	6

Unit-V

UI	III - V		
S.No		Blooms	Course
5.110	Question	Taxonomy	Outcom
·		Level	e
1	Draw the PV and TS diagram of Atkinson Cycle?	Understand	5
2	Draw the PV and TS diagram of Ericsson Cycle?	Understand	5
3	Draw the PV and TS diagram of Lenoir Cycle?	Understand	5
4	Define vapor compression cycle?	Understand	5
5	Draw the PV and TS diagram of Sterling Cycle?	Understand	5
6	Compare the thermal efficiency and mean effective pressure of Otto and diesel cycles?	Understand	5
7	Compare the thermal efficiency and mean effective pressure of dual and diesel cycles?	Understand	5
8	Examine the performance of Bell-Coleman cycle?	Analyze	5
9	An engine working on Otto cycle has a volume of 0.45m ³ pressure lbar and temperature 30 ^o C at the beginning of the compression stroke. At the end of the compression stroke the pressure is 11bar. 210kJ of heat is added at constant volume. Determine efficiency and mean effective pressure?	Analyze	5
10	A Bell-Coleman refrigerator operates between pressure limits of Ibar and 8bar. Air is drawn from the cold chamber at 9°C, compressed and then it is cooled to 29°C before entering the expansion cylinder. Expansion and compression follow the law pV ^{1.35} =C. Calculate theoretical C.O.P of the system. Take y of air is 1.4.	Analyze	5

XI. OBJECTIVE QUESTIONS

UNIT-1

1. A thermodynamic system is referred to be an isolated system when there is transfer of across the boundaries. []

(A) only mass B) only energy C) both mass and energy D) neither mass nor energy

(D) Bomb calorimeter

- 2. Which one of the following represents open thermodynamic system? []
 - (A) Manual ice cream freezer (B) Centrifugal pump
 - (C) Pressure cooker
- 3. A thermodynamic system is considered to be an isolated one if []
 - (A) Mass transfer and entropy change are zero
 - (B) Entropy change and energy transfer are zero
 - (C) Energy transfer and mass transfer are zero
 - (D) Mass transfer and volume change are zero
- 4. A closed system is one in which []
 - (A) Mass does not cross boundaries of the system, though energy may do so
 - (B) Mass crosses the boundary but not the energy
 - (C) Neither mass nor energy cross the boundary of the system
 - (D) Both energy and mass cross the boundaries of the system
- 5. Which one of the following is the extensive property of a thermodynamic system? []
 - A) Volume B) pressure C) temperature D) density

6. Work transfer between the system and the surroundings		
(A) Is a point function (B) Is always given by ∫Pdv		
(C) Is a function of pressure only (D) depends on the path followed by the system?		
7. A path function quantity is []		
(A)Pressure (B) Temperature (C) Enthalpy (D) Heat		
8. In highly rarefied gases, the concept of this loses validity		
(A) Thermodynamic equilibrium (B) continuum (C) stability (D) Macroscopic view point		
9. Absolute zero temperature is taken as []		
(a) -273° C (b) 273° C (c) 237° C (d) -373° C.		
10. The amount of heat required to raise the temperature of 1 kg of water through 1°C is called []		
(A) specific heat at constant volume(B)specific heat at constant pressure(D)none of the above.		
11. A series of operations, which take place in a certain order and restore the initial condition		
is known as []		
(A) reversible cycle (B) irreversible cycle (C) thermodynamic cycle (D)none		
12. The condition for the reversibility of a cycle is		
(A) the pressure and temperature of the working substance must not differ, appreciably,		
from those of the surroundings at any stage in the process []		
(B) all the processes, taking place in the cycle of operation, must be extremely slow		
(C) the working parts of the engine must be friction free []		
(D) there should be no loss of energy during the cycle of operation		
(E) all of the above (F) none of the above.		
13. In an irreversible process, there is a []		
(A) loss of heat (B) no loss of heat (C) gain of heat (D) no gain of heat.		
14. The thermometric property for a constant volume gas thermometer is []		
(A) Pressure B) volume (C) resistance D) length		
15. Energy can be neither created nor destroyed, but it can be transformed from one form to		
another. This statement is known as []		
(A) Zeroth law of thermodynamics B) first law of thermodynamics		
(C) second law of thermodynamics D) kinetic theory of gases		
16. A perpetual motion machine of first kind is represented by []		
(A) Fully reversible engine B) an engine with 100% thermal efficiency		
(C) A machine that continuously creates its own energy		
(D) A machine that is capable of transferring heat energy from a system at low		
temperature to a system at high temperature		
17. A PMM I is []		
(A)Impossible according to second law of thermodynamics		
(B) Possible according to first law of		
(C) Impossible according to first law of thermodynamics		

ALL STOR

[]

- (D) Possible according to second law of thermodynamics
- 18. The temperature of a gas is the measure of ______
 - (A)Average kinetic energy of gas molecules (B) Average distance between gas molecules
 - (C) Average potential energy of gas molecules (D) None
- 19. Which one of the following statements is not correct? In a transient flow process []
 - (A) The rates of inflow and outflow of mass are different
 - (B) The state of matter inside the control volume varies with time
 - (C) There can be heat and work interactions across the control volume
 - (D) There is no accumulation of energy inside the control volume

UNIT-2

1. In a Carnot cycle, the rejection of heat is [] (A) At constant pressure B) at constant volume C) at constant temperature D) Partly at constant pressure and partly at constant volume 2. Availability of a system at any given state is [] (A) a property of the system B) total energy of the system (C) maximum work obtainable as the system goes to dead state D) Maximum useful work obtainable as the system goes to dead state 3. For a thermodynamic cycle to be reversible, it is necessary that [] B) cyclic integral of 2Q/T < 0A) cyclic integral of ?Q/T = 0(C) Cyclic integral of 2Q/T > 0D) cyclic integral of ?Q/T ? 04. Second law of thermodynamics gives the concept of [] (A) Work (B) heat (C) internal energy (D) entropy 5. In a reversible process, the change in entropy is [] (A) Zero (B) minimum (C) maximum (D) unity 6. Increase in entropy of a system represents [] (A) Increase in availability of energy (B) Increase in temperature (C) Decrease in pressure (D) Degradation of energy 7. Gibb's function is expressed as [] (A) H-TS (B) U-TS (C)H+TS(D) U+TS8. A refrigerator operates between the temperatures of -23 $^{\circ}$ C and 27 $^{\circ}$ C. If one TR = 3.5 kW, the minimum power required per TR to operate the refrigerator is [] (B) 0.7 kW (C) 0.9 kW (A) 0.5 kW (D) 1.0 kW 9. Efficiency of a Carnot engine is 75%. If the cycle direction is reversed, COP of the reversed Carnot cycle is [] (A) 1.33 (B) 0.75 (C) 0.33 (D) 1.75 10. The continual motion of a movable device in absence of friction (A) Violates the first law of thermodynamics (B) Violates the second law of thermodynamics (C) Is the perpetual motion of the second kind? (D) Is the perpetual motion of the third kind?

11. For a given temperature T_1 as the difference between T_1 and T_2 increase, the COP of a Carnot heat pump

(A) Increases (B) decreases (C) does not change (D) first decrease, then increases

- 12. A heat engine is supplied with 2515kJ/min of heat at 650°C. Heat rejection with 900kJ/minute takes place at 100°C. This type of heat engine is []
 - (A) Ideal (B) irreversible (C) impossible (D) practical
- 13. When a system reaches the state of equilibrium, the following property assumes its maximum value
 - (A) Availability (B) Entropy (C) Gibbs function (D) Helmholtz function
- 14. 100kJ of energy is transferred from a heat reservoir at 1000K to a heat reservoir at 500k. The ambient temperature is 300K. The loss of available energy due to heat transfer process is

(A) 20kJ (B) 30kJ (C) 40kJ (D) 50kJ

UNIT-3

1. At triple point of a pure substance [] (A) liquid and vapour phases co-exist B) Solid and vapour phases co-exist (C) liquid and solid phases co-exist D) Solid, liquid and vapour phases co-exist 2. Mollier diagram is drawn between [] (A) p-V B) T-S C) h-s D) p-T 3. Heat supplied to a system equals the work done in case of a non-flow process carried out (A) Isochorically (B) Isobarically (C)Isothermally (D)Adiabatically 4. Only throttling calorimeter is used for measuring [] (A) Very low dryness fraction up to 0.7 (B) very high dryness fraction up to 0.98(C) Dryness fraction of only low pressure steam (D) dryness fraction of only high pressure steam 5. Air is being forced by the bicycle pump into a tyre against a pressure of 4.5 bars. A slow downward movement of the piston can be approximated as' [] (A) Isobaric process (B) Adiabatic process (C) Throttling process (D) Isothermal process 6. Isentropic flow is [] (A) Irreversible adiabatic flow (B) Reversible adiabatic flow (C) Ideal fluid flow (D) Frictionless reversible flow 7. Reduced pressure is [] (A) Always less than atmospheric pressure (B) Always unity (C) An index of molecular position of a gas (D) Dimensionless 8. State of a wet vapour cannot be specified only by [] (A) Pressure and temperature (B) Pressure and dryness fraction (C) Temperature and dryness fraction (D) Pressure and volume 9. In which of the following processes, the heat is fully converted into work? (A) Reversible adiabatic process (B) Reversible isobaric process (C) Reversible isometric process (D) Reversible isothermal process

10. Consider the following statements for a throttling process: 1. It is an adiabatic process 2. There is no work transfer in the process 3. Entropy increases in throttling process. Which of these statements are correct?

(A) 1, 2 and 3 (B) 1 and 2 only (C) 2 and 3 only (D) 1 and 3 only

11. For steady flow through an insulated horizontal constant pipe, this property remains constant

(A) Enthalpy (B) Internal energy (C) Entropy (D) Volume

- 12. The difference between constant pressure specific heat C_p and constant volume specific heat C_v for pure substance
 - (A) approaches zero at triple point
 - (B) approaches zero as the absolute temperature approaches zero
 - (C) is always equal to the gas constant R
 - (D) approaches zero at critical point

UNIT -4

- Which of the following variables controls the physical properties of a perfect gas []

 (A) pressure (B)temperature (C) volume (D)all of the above
- 2. Gas laws are applicable to _____ []
 - (A) gases as well as vapours (B) gases alone and not to vapours
 - (C) gases and steam (D) none of the above
- 3. The ratio of two specific heats of air is equal to _____ []
 - (A) 0.17 (B) 0.24 (C) 0.37 (D) 1.41
- 4. The statement that molecular weights of all gases occupy the same volume is known as (A) Avogadro's hypothesis (B) Dalton's law (C) Gas law (D) Joule's Law
- 5. On volume basis, air contains following percentage of oxygen [] (A) 21 (B) 23 (C)25 (D)77
- 6. In air-water vapour mixture, the partial pressure of water vapour corresponds to the saturation temperature called
 - (A) Dew point temperature (B) Wet bulb temperature
 - (C) Dry bulb temperature (D) Adiabatic saturation temperature
- A certain air has DBT of 35°C and DPT of 20°C, the corresponding saturation pressure of water being 5.628 kPa and 2.33 kPa respectively. When the atmospheric pressure is assumed as 1.0132 bar, the specific humidity of air will be

 (A) 2.5 X 10⁻³(B) 7.8 X 10⁻³ (C) 14.7 X 10⁻³
 (D) 25X 10⁻³
- (A) 2.5 X 10^{-6} (B) 7.8 X 10^{-5} (C) 14.7 X 10^{-5} (D) 25X 10^{-5}
- 8. There is no work transfer involved in this process
 - (A) Adiabatic expansion

- (B) Isothermal expansion
- (C) Polytropic expansion (D) Free expansion
- 9. In which of the following processes, the heat is fully converted into work?
 - (A) Reversible adiabatic process
- (B) Reversible isobaric process
- (C) Reversible isometric process (D) Reversible isothermal process

UNIT -5

- Thermal power plant works on _____ cycle.
 (A) Carnot (B) Joule (C) Rankine (D) Otto
- 2. Otto cycle consists of following four processes ______.
 - (A) two isothermals and two isentropics
 - (B) two isentropics and two constant volumes
 - (C) two isentropics and one constant volume and one constant pressure
 - (D) two isentropics and two constant pressures
- 3. A Bell-Coleman cycle is a reversed _____ cycle. []
 - (A) otto (B) Carnot (C) stirling (D) Joule
- 4. The effects of superheating of vapour in the evaporator and sub cooling of condensate in the condenser, for the same compressor work is:
 - (A) Increase the COP
 - (B) Decrease the COP
 - (C) Superheating increases COP, but sub cooling decreases COP
 - (D) Superheating decreases COP, but sub cooling increases COP
- 5. The cycle in which heat is supplied at constant volume and rejected at constant pressure is known as []

```
(A) Dual combustion cycle (B) Diesel cycle (C) Atkinson cycle (D) Rankine cycle
```

- 6. This reversible cycle consists of constant volume heat addition, reversible adiabatic expansion and constant pressure heat rejection
 - (A) Otto cycle (B) Lenoir cycle (C) Atkinson cycle (D) Brayton cycle
- The COP of a refrigerator working on a reversed Carnot cycle is 5. The ratio of the highest absolute temperature to the lowest absolute temperature would be
 (1) 1.25 (D) 1.2 (D) 1.
 - (A) 1.25 (B) 1.3 (C) 1.4 (D) 1.2
- An ideal vapour compression refrigerator operates between a condenser pressure p1 and an evaporator pressure p2. Which of the following changes would increase its COP?
 - (A) Increasing p_1 by Δp and keeping p_2 constant
 - (B) Decreasing p_2 by Δp and keeping p_1 constant
 - (C) Adopting wet compression (D) Subcooling the refrigerant

ii) GATE QUESTIONS:

- 1. The maximum theoretical work obtainable, when a system interacts to equilibrium with a reference environment, is called _____.
 - (A) Entropy (B) Enthalpy (C) Exergy (D) Rothalpy
- 1.5 kg of water is in saturated liquid state at 2 bar (v_f = 0.001061 m3/kg, u_f = 504.0 kJ/kg, h_f = 505 kJ/kg). Heat is added in a constant pressure process till the temperature of water reaches 400°C (v = 1.5493 3 m / Kg, u = 2967.0 kJ/kg, h = 3277.0 kJ/kg). The heat added (in kJ) in the process is _____.
- 3. In an air-standard Otto cycle, air is supplied at 0.1 MPa and 308 K. The ratio of the specific heats (γ) and the specific gas constant (R) of air are 1.4 and 288.8 J/kg.K,

respectively. If the compression ratio is 8 and the maximum temperature in the cycle is 2660 K, the heat (in kJ/kg) supplied to the engine is

4. A reversible heat engine receives 2 kJ of heat from a reservoir at 1000 K and a certain amount of heat from a reservoir at 800 K. It rejects 1 kJ of heat to a reservoir at 400 K. The net work output (in kJ) of the cycle is

5. The thermal efficiency of an air-standard Brayton cycle in terms of pressure ratio r_p and γ is given by

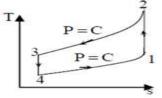
(A)
$$1 - \frac{1}{r_p^{r-1}}$$
 (B) $1 - \frac{1}{r_p^r}$ (C) $1 - \frac{1}{r_p^{1/r}}$ (D) $1 - \frac{1}{r_p^{(\gamma-1)/\gamma}}$

- 6. A pure substance at 8 MPa and 400°C is having a specific internal energy of 2864 kJ/kg and a specific volume of 0.03432 m 3 / kg. Its specific enthalpy (in kJ/kg) is _____.
- 7. In an ideal Brayton cycle, atmospheric air (ratio of specific heats, cp/cv = 1.4, specific heat at constant pressure = 1.005 kJ/kg.K) at 1 bar and 300 K is compressed to 8 bar. The maximum temperature in the cycle is limited to 1280 K. If the heat is supplied at the rate of 80 MW, the mass flow rate (in kg/s) of air required in the cycle is _____.
- 8. Which one of the following pairs of equations describes an irreversible heat engine?

(A)
$$\oint \delta Q > 0$$
 and $\oint \frac{\delta Q}{T} < 0$
(B) $\oint \delta Q < 0$ and $\oint \frac{\delta Q}{T} < 0$
(C) $\oint \delta Q > 0$ and $\oint \frac{\delta Q}{T} > 0$
(D) $\oint \delta Q < 0$ and $\oint \frac{\delta Q}{T} > 0$

- 9. A source at a temperature of 500K provides 1000kJ of heat. The temperature of environment is 27°C. The maximum useful work (in kJ) that can be obtained from the heat source is _____.
- 10. A sample of moist air at a total pressure of 85 KPa has a dry bulb temperature of 30°C (saturation vapour pressure of water = 4.24 KPa). If the air sample has a relative humidity of 65%, the absolute humidity (in gram) of water vapour per kg of dry air is _____.
- 11. A certain amount of an ideal gas is initially at a pressure P1 and temperature T1. First, it undergoes a constant pressure process 1-2 such that T2 = 3T1/4. Then, it undergoes a constant volume process 2-3 such that T3 = T1/2. The ratio of the final volume to the initial volume of the ideal gas is

- 12. A diesel engine has a compression ratio of 17 and cut-off take place at 10% of the stroke. Assuming ratio of specific heats (γ) as 1.4, the air-standard efficiency (in percent) is
- 13. An air-standard Diesel cycle consists of the following processes: 1-2: Air is compressed isentropically. 2-3: Heat is added at constant pressure. 3-4: Air expands isentropically to the original volume. 4-1: Heat is rejected at constant volume. If γ denotes the specific heat ratio and T temperature, respectively the efficiency of the cycle is


- (A) $1 [(T_4 T_1)/(T_3 T_2)]$
- (C) 1-[γ (T₄-T₁)/(T₃-T₂)]

(B) $1 - [(T_4 - T_1)/\gamma(T_3 - T_2)]$ (D) $1 - [(T_4 - T_1)/(\gamma - 1)(T_3 - T_2)]$

14. A rigid container of volume 0.5 m³ contains 1.0 kg of water at 120°C ($v_f = 0.00106$ m³/kg, $v_g = 0.8908$ m³/kg). The state of water is _____.

(A) Compressed liquid (B) Saturated liquid (C) A mixture of saturated liquid and saturated vapor (D) Superheated vapor

15. The thermodynamic cycle shown in figure (T/s diagram) indicates:

(A) Reversed Cannot cycle (B) Reversed Brayton cycle

- (C) Vapor compression cycle (D) Vapor absorption cycle
- 16. An air-standard Diesel cycle consists of the following processes: 1-2: Air is compressed isentropically. 2-3: Heat is added at constant pressure. 3-4: Air expands isentropically to the original volume. 4-1: Heat is rejected at constant volume. If γ denotes the specific heat ratio and T temperature, respectively the efficiency of the cycle is

(A) $1 - [(T_4 - T_1)/(T_3 - T_2)]$

(C) 1-[γ (T₄-T₁)/(T₃-T₂)]

- 17. Air in a room is at 35° and 60% relative humidity (RH). The pressure in the room is 0.1 MPa. The saturation pressure of water at 35°C is 5.63 kPa. The humidity ratio of the air (in gram/kg of dry air) is _____.
- 18. For an ideal gas with constant values of specific heats, for calculation of the specific enthalpy,
 - (a) it is sufficient to know only the temperature
 - (b) both temperature and pressure are required to be known
 - (c) both temperature and volume are required to be known
 - (d) both temperature and mass are required to be known
- 19. A Carnot engine (CE-1) works between two temperature reservoirs A and B, where $T_A = 900$ K and $T_B = 500$ K. A second Carnot engine (CE-2) works between temperature reservoirs B and C, where $T_C = 300$ K. In each cycle of CE-1 and CE-2, all the heat rejected by CE-1 to reservoir B is used by CE-2. For one cycle of operation, if the net Q absorbed by CE-1 from reservoir A is 150 MJ, the net heat rejected to reservoir C by CE-2 (in MJ) is _____.
- 20. A stream of moist air (mass flow rate = 10.1 kg/s) with humidity ratio of 0.01kg per kg dry air mixes with a second stream of superheated water vapour flowing at 0.1 kg/s. Assuming proper and uniform mixing with no condensation, the humidity ratio of the final stream is ______ kg per kg dry air.

⁽B) $1 - [(T_4 - T_1)/\gamma(T_3 - T_2)]$

⁽D) $1 - [(T_4 - T_1)/(\gamma - 1)(T_3 - T_2)]$

- 21. Air enters a diesel engine with a density of 1.0 kg/m3. The compression ratio is 21. At steady state, the air intake is 30×10^{-3} kg/s and the net work output is 15 kW. The mean effective pressure (kPa) is
- 22. The Vander Waals equation of state is $(p + a/v^2) (v b) = RT$ where p is pressure, v is specific volume, T is temperature and R is characteristic gas constant. The SI unit of a is (A) J/kg.K (B) m³/kg (C) m⁵/kg-s² (D) Pa/kg
- 23. The COP of a Carnot heat pump operating between 6°C and 37°C is _____.
- 24. One kg of air (R = 287 J/kg.K) undergoes an irreversible process between equilibrium state 1 (20°C, 0.6m³) and equilibrium state 2 (20°C, 0.6m³). The change in entropy S2 S1 (in J/kg.K) is _____ \Box
- 25. Work is done on an adiabatic system due to which its velocity changes from 10 m/s to 20 m/s, elevation increases by 20 m and temperature increases by 1K. The mass of the system is 10 kg. $C_V = 100J$ kg.K and gravitational acceleration is 10 m/s². If there is no change in any other component of the energy of the system, the magnitude of total work done (in kJ) on the system is _____.
- 26. A mixture of ideal gases has the following composition by mass:

N ₂	O ₂	CO ₂
60%	30%	10%

If the Universal gas constant is 8314 J/mol-K, the characteristic gas constant of the mixture (in J/kg.K) is _____.

27. For the same values of peak pressure, peak temperature and heat rejection, the correct order of efficiencies for Otto, Dual and Diesel cycles is \Box

(A) $\eta_{otto} > \eta_{Dual} > \eta_{Diesel} \square$ (B) $\eta_{Diesel} > \eta_{Dual} > \eta_{otto}$

 $(C) \ \eta_{Dual} > \eta_{Diesel} > \eta_{otto} \qquad (D) \ \eta_{Diesel} > \eta_{otto} > \eta_{Dual}$

iii) IES QUESTIONS:

1. A body of mass 20kg falls freely in vacuum. It has fallen through a vertical distance of 50m. The gravitational acceleration may be assumed as 10ms². What is the thermodynamic work done by the body?

```
(A) 1000Nm (B) 10kJ (C) 0 (D) 1kNm
```

- 2. When a system is taken from state "x" to state "y", 30kJ of heat flows into the system and the system does 10kJ of work. When the system is returned from "y" to "x" along another path, work done on the system is 8 kJ. What is the amount of heat liberated or absorbed?
 (A) 12kJ of the heat liberated
 (B) 28 kJ of heat liberated
 (C) 12kJ of the heat absorbed
- 3. A closed gaseous system undergoes a reversible constant pressure process at 2 bar in which 100kJ of heat is rejected and the volume change from 0.2m³ to 0.1m³. The change in the internal energy of the system is

(A) -100 kJ (B) -80 kJ (C) -60 kJ (D) -40 kJ

- 4. A Carnot engine receives 100kJ of heat at 600K. Heat is rejected at 300 K. The displacement volume is 0.2 m³. The mean effective pressure is
 - (A) 2 bar (B) 2.5 bar (C) 3 bar (D) 3.5 bar
- 5. The values of heat transfer and work transfer for the process of a thermodynamic cycle are given below:

Process	Heat transfer (kJ)	Work transfer (kJ)
1	300	300
2	00	250
3	-100	-100
4	00	-250

The thermal efficiency of the cycle and the work ratio will be respectively:

(A) 33% and 0.66 (B) 66% and 0.36 (C) 36% and 0.66 (D) 33% and 0.36

- 6. A body of mass 2kg and Cp = 1.00 kJ/kg K is available at 600 K. If the atmosphere is 300K and $\ln(2) = 0.693$, the maximum work obtainable from the body till it comes to equilibrium with the atmosphere is
 - (A) 150kJ (B) 142kJ (C) 184.2kJ (D) 190.5kJ
- 7. A liquid of heat capacity 5 J/K in an insulated container is heated electrically from 300 K to 600 K. If In 2 = 0.693, entropy generation of the universe would be
 (A) 6.93 J/K (B) 3.465 J/K (C) 34.65 J/K (D) 10.65 J/K
- 8. Which of the following relationships represents the change of entropy of perfect gas?
 (i) Cp (dT/T) + (R/V) dV
 (ii) Cp (dT/T) (R/V) dP
 (iii) Cv (dP / P) + Cp (dV / V)
 (iv) Cp (dP / P) Cv (dV / V)
 (A) 1, 2 and 4 only
 (B) 1, 2 and 3 only
 (C) 2, 3 and 4 only
 (D) 1, 2, 3 and 4
- 9. During a thermodynamic process, 100 kJ of heat is transferred from a reservoir at 800K to a sink at 400K. The ambient temperature is 300 K. The loss of available energy is
 (A) 27.5 kJ
 (B) 32.5kJ
 (C) 37.5kJ
 (D) 62.5kJ
- 10. A refrigerator that operates on a Carnot cycle is required to transfer 2000kJ/min to the atmosphere at 27°C, where the low temperature reservoir is a 0°C. What is the power required?
 - (A) 200W (B) 32.93kW (C) 200kW (D) 3.33kW

XII. WEBSITES:

- 1. https://thermodynamics-engineer.com/
- 2. <u>http://nptel.ac.in/video.php?subjectId=112105123</u>
- 3. <u>http://www.learnthermo.com/</u>
- 4. http://esciencenews.com/dictionary/thermodynamics
- 5. <u>http://research.omicsgroup.org/index.php/Thermodynamics</u>

XIII. EXPERT DETAILS:

- 1. Prof. D. P. Mishra, Professor, IIT, Kanpur
- 2. Dr. A. V. S. S. S. K. S. Gupta, Professor, JNTU, Hyderabad
- XIV. JOURNALS (National & International):
 - 1. JOURNAL OF THERMDYNAMICS <u>http://www.hindawi.com/journals/jther/</u>

- 2. International Journal of Thermodynamics <u>http://dergipark.ulakbim.gov.tr/eoguijt/</u>
- 3. International Journal of Mechanics and Thermodynamics (IJMT) http://www.ripublication.com/irph/ijmt.htm

XV. LIST OF TOPICS FOR STUDENT SEMINARS:

- 1. Principles of thermometry
 - 2. Limitations of the First Law
 - 3. Perfect Gas Laws
 - 4. Mixtures of Perfect Gases
 - 5. Thermodynamic cycles

XVI. CASE STUDIES/SMALL PROJECTS:

- 1. Energy interactions in proof of First Law
- 2. IInd law of efficiencies for Heat engines.
- 3. Possible implementation of Thermodynamics power cycles
- 4. Exergy significance in design of thermal system.
- 5. Refrigeration cycles
- 6. Otto and diesel cycle