

DATA MINING

Subject Code: CS701PC

Regulations : R16 - JNTUH

Class: IV Year B.Tech CSE I Semester

Department of Computer Science and Engineering
Bharat Institute of Engineering and Technology
Ibrahimpatnam-501510, Hyderabad

DATA MINING (CS701PC) COURSE PLANNER

I. COURSE OVERVIEW:

At the end of the course the student should be in a position to

1. Data mining, the extraction of hidden predictive information from large databases, is a powerful new technology with great potential to help companies focus on the most important information in their data warehouses.
2. This course will introduce the concepts of data mining, which gives a complete description about the principles used, architectures, applications, design and implementation of data mining.
3. Data mining tools predict future trends and behaviors, allowing businesses to make proactive, knowledge- driven decisions.
4. Analyze data sets in order to predict future trends useful for data science.

II. PRE-REQUISITES:

The knowledge of following subject is essential to understand the subject:

1. Understand the concepts of Data Mining Concepts.
2. Explain the methodologies used for analysis of data
3. Describe various techniques which enhance the data modeling.
4. Discuss and Compare various approaches with other techniques in data mining.

III. COURSE OBJECTIVES:

1. Learn data mining concepts understand association rules mining
2. Discuss classification algorithms learn how data is grouped using clustering techniques
3. To develop the abilities of critical analysis to data mining systems and applications.
4. To implement practical and theoretical understanding of the technologies for data mining
5. To understand the strengths and limitations of various data mining models;

IV. COURSE OUTCOMES:

S. No.	Course Outcomes	Bloom's Taxonomy Levels
1.	Ability to perform the preprocessing of data and apply mining techniques on it	Knowledge, Understand
2.	Ability to identify the association rules, classification and clusters in large data sets	Apply, Evaluating
3.	Ability to solve real world problems in business and scientific information using data mining	Analyze, Evaluating
4.	Ability to classify web pages, extracting knowledge from the web	Analyze, create

V. HOW PROGRAM OUTCOMES ARE ASSESSED:

Program Outcomes (PO)		Level	Proficiency assessed by
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems related to Computer Science and Engineering.	2.6	Mini Projects
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems related to Computer Science and Engineering and reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	1.4	Lectures, Assignments, Exams
PO3	Design/development of solutions: Design solutions for complex engineering problems related to Computer Science and Engineering and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2.4	Mini Projects
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	--
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	-	--
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the Computer Science and Engineering professional engineering practice.	-	--
PO7	Environment and sustainability: Understand the impact of the Computer Science and Engineering professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	-	Lectures, Assignments, Exams
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	-	
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	-	Mini Projects

Program Outcomes (PO)		Level	Proficiency assessed by
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	-	--
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	2.2	Lectures, Assignments, Exams
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2.2	Lectures, Assignments, Exams

VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Program Specific Outcomes (PSO)		Level	Proficiency assessed by
PSO1	Foundation of mathematical concepts: To use mathematical methodologies to crack problem using suitable mathematical analysis, data structure and suitable algorithm.	2.4	Mini Project
PSO2	Foundation of Computer System: The ability to interpret the fundamental concepts and methodology of computer systems. Students can understand the functionality of hardware and software aspects of computer systems.	2.6	Lectures, Assignments, Exams
PSO3	Foundations of Software development: The ability to grasp the software development lifecycle and methodologies of software systems. Possess competent skills and knowledge of software design process. Familiarity and practical proficiency with a broad area of programming concepts and provide new ideas and innovations towards research.	2	Mini Project

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)- : None

VII. SYLLABUS:

UNIT – I: Introduction to Data Mining: Introduction, What is Data Mining, Definition, KDD, Challenges, Data Mining Tasks, Data Preprocessing, Data Cleaning, Missing data, Dimensionality Reduction, Feature Subset Selection, Discretization and Binaryization, Data Transformation; Measures of Similarity and Dissimilarity- Basics.

UNIT –II: Association Rules: Problem Definition, Frequent Item Set Generation, The APRIORI Principle, Support and Confidence Measures, Association Rule Generation; APRIORI Algorithm, The Partition Algorithms, FP-Growth Algorithms, Compact Representation of Frequent Item Set- Maximal Frequent Item Set, Closed Frequent Item Set.

UNIT – III: Classification: Problem Definition, General Approaches to solving a classification problem ,Evaluation of Classifiers , Classification techniques, Decision Trees-Decision tree

Construction , Methods for Expressing attribute test conditions, Measures for Selecting the Best Split, Algorithm for Decision tree Induction ; Naive-Bayes Classifier, Bayesian Belief Networks; K- Nearest neighbor classification-Algorithm and Characteristics.

UNIT -IV: Clustering: Problem Definition, Clustering Overview, Evaluation of Clustering Algorithms, Partitioning Clustering-K-Means Algorithm, K-Means Additional issues, PAM Algorithm;Hierarchical Clustering-Agglomerative Methods and divisive methods, Basic Agglomerative Hierarchical Clustering Algorithm, Specific techniques, Key Issues in Hierarchical Clustering, Strengths and Weakness; Outlier Detection.

UNIT – V: Web and Text Mining: Introduction, web mining, web content mining, web structure mining, we usage mining, Text mining –unstructured text, episode rule discovery for texts, hierarchy of categories, text clustering.

GATE SYLLABUS: NOT APPLICABLE

IES SYLLABUS: NOT APPLICABLE

VIII. LESSON PLAN:

S.NO	WEEK	TOPICS	Course Learning Outcomes	Teaching methodologies	REFERENCE
UNIT-1					
1	1	Introduction to Data Mining, what is Data Mining Definition of Data Mining	Understanding and Remembering the definition of data Mining	Chalk and board, PPT presentation	T1
2		what is Data Mining Definition of Data Mining	Understanding and Remembering the definition of data Mining		T1
3.		KDD,Challenges	Understanding KDD		T1
4		Data Mining Tasks	Analyzing the different data mining Task		T1
5	2	Data Preprocessing	Understanding the process of Data preprocessing and Data Cleaning	Chalk and board, PPT presentation	T1
6		Data Cleaning, missing data	Applying the data cleaning process		T1
7		Dimensionality Reduction	Analyzing Dimensionality Reduction		T1
8	3	Feature Subset Selection	Understanding Subset selection		T1
9		Discretization and Binaryzation	Understanding Discretization and Binaryzation		T1
10		Data Transformation	Analyzing Data Transformation		T1

11	4	Measures of Similarity-Basics	Analyzing Similarity – Basics and Dissimilarity Basics		T1
12		Revision of Unit-1			T1
13		MOCK TEST-1			T1
14		<i>Tutorial/bridge class #1</i>			

UNIT-2

15	5	Association Rules :Problem Definition	Understanding Association Rules	Chalk and board, PPT presentation	T1,T2
16	6	Frequent Item Set Generation	Analyzing Frequent Item set Generation		T1,T2
17		The APRIORI Principle	Understanding APRIORI principal, support and confidence Measures		T1,T2
18		Support and Confidence Measures	Evaluating		T1,T2
19		Association Rule Generation	Evaluating Association Rule		T1,T2
20		APRIORI Algorithm	Analyzing APRIORI Algorithm		T1,T2
21		The Partition Algorithms	Understanding the Partition Algorithms		T1,T2
22		FP-Growth Algorithms	Understanding FP-Growth Algorithms		T1,T2
23		Compact Representation of Frequent Item-Set-Maximal Frequent Item Set	Creating a Representation of Frequent Item-set and Maximal, Closed Frequent Item set		T1,T2
24		Closed Frequent Item Set , Revision of Unit-II	Understanding		T1,T2
25	8	<i>Tutorial/bridge class #2</i>			

I-MID EXAMINATIONS(WEEK-9)

UNIT-3

26	9	Classification:Problem Definition	Understanding the Classification	Chalk and board, PPT presentation	T1,T2
27		General Approaches to Solving a Classification Problem	Evaluating the Classification problem		T1,T2
28		Evaluation of Classifiers ,Classification Techniques	Evaluating the classifiers and classification Techniques		T1,T2
29		Decision-Trees-Decision tree Construction	Creating Decision Tree		T1,T2

30	10	Methods for Expressing attribute test conditions	Understanding attribute test conditions		T1,T2
31		Measures for selecting the best split	Evaluating for selecting the best split		T1,T2
32		Algorithm for Decision tree induction	Evaluating		T1,T2
33		Naïve-Bayes Classifier	Understanding Naïve –Bayes Classifier		T1,T2
34	11	Bayesian Belief Networks	Understanding Bayesian Belief Networks		T1,T2
35		K-Nearest Neighbor classification-Algorithm and characteristics	Understanding K-Nearest Neighbor classification-Algorithm		T1,T2
36		K-Nearest Neighbor classification-Algorithm and characteristics Continuation	Understanding K-Nearest Neighbor classification-Algorithm		T1,T2
37		Tutorial/bridge class #3			

UNIT-4

38	12	Clustering:Problem Definition	Understanding clustering	Chalk and board, PPT presentation	T1,T2
39		Clustering Overview,Evaluation of Clustering Algorithms	Evaluating Clustering Algorithms, Partitioning, K-Means Algorithm		T1,T2
40	13	Partitioning Clustering	Evaluating		T1,T2
41		K-Means Algorithm	Evaluating		T1,T2
42		K-Means Additional Issues	Understanding K-Means		T1,T2
43		K-Means Additional IssuesCont...	Understanding K-Means		T1,T2
44	14	PAM Algorithm	Evaluating PAM Algorithm		T1,T2
45		PAM Algorithm Continuation	Evaluating PAM Algorithm		T1,T2
46		Hierarchical clustering Methods	Understanding Hierarchical clustering Methods		T1,T2
47		Hierarchical clustering Methods Continuation	Understanding Hierarchical clustering Methods		T1,T2
48		Agglomerative Methodes&Davisive methods	Understanding and Evaluating Agglomerative Hierarchical clustering Algorithm		T1,T2
49		Basic Agglomerative Hierarchical clustering Method	Understanding and Evaluating Agglomerative Hierarchical clustering		T1,T2

		Algorithm		
50		Specific Techniques	Understanding	T1,T2
51		Issues in Hierarchical clustering	Analyzing Issues in Hierarchical clustering	T1,T2
52		Issues in Hierarchical clustering Continuation	Analyzing Issues in Hierarchical clustering	T1,T2
53		Strengths and Weakness	Analyze Strengths and Weakness of clustering	T1,T2
54		Outlier Detection	Understanding Outlier Detection	T1,T2
55		<i>Tutorial/bridge class #4</i>		
56		MOCK TEST-2	MOCK TEST-2	
UNIT-5				
57	15	Introduction, Web Mining	Understanding	T3
58		Web content Mining	Remembering	T3
59		Web structure Mining	Analyzing	T3
60		Web usage mining	Analyzing	T3
61		Text mining –Unstructured Text	Understanding	T3
62		Episode Rule discovery for texts	Analyzing	T3
63		Hierarchy of categories	Understanding	T3
64	16	Text mining		T3
65		<i>Tutorial/bridge class #6</i>		
66		REVISION		
II MID EXAMINATIONS (WEEK 17)				

TEXT BOOKS:

1. Data Mining- Concepts and Techniques- Jiawei Han, Micheline Kamber, Morgan Kaufmann Publishers, Elsevier, 2 Edition, 2006.
2. Introduction to Data Mining, Pang-Ning Tan, Vipin Kumar, Michael Steinbanch, Pearson Education.
3. Data mining Techniques and Applications, Hongbo Du Cengage India Publishing

REFERENCES:

1. Data Mining Techniques, Arun K Pujari, 3rd Edition, Universities Press.

2. Data Mining Principles & Applications – T.V Sveresh Kumar, B.Esware Reddy, Jagadish S Kalimani, Elsevier.
3. Data Mining, Vikaram Pudi, P Radha Krishna, Oxford University Press

X.MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course	Program Outcomes												Program Specific			
													Outcomes	PSO1	PSO2	PSO3
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
1	3	3	2	2	2	-	1	1	1	1	2	1	1	1	1	1
2	3	3	3	3	3	1	1	1	2	1	2	2	2	2	2	3
3	3	3	3	3	3	3	2	2	2	2	3	3	2	3	3	3
4	3	3	3	3	3	2	2	2	2	2	2	2	2	3	3	3
AVG	3	3	2.75	2.75	2.75	1.5	1.5	1.5	1.75	1.5	2.25	2.0	1.75	2.25	2.25	2.5

X. QUESTION BANK

UNIT-1

Short Answer Questions

QUESTIONS	Blooms taxonomy level	Course Outcome
1.Define data mining?	Understand	CO1
2.Explain the functionalities of data mining?	Understand	CO1
3.Interpret the major issues in data mining?	Knowledge	CO1
4.Name the steps in knowledge discovery?	Knowledge	CO1
5.Distinguish between data ware house and data mining?	Analyze	CO1

Long Answer Questions

1.Describe Data Mining? In your answer explain the following: a. Is it another hype? b. Is it simple transformation of technology developed from databases, statistics and machine learning? c. Explain how the evolutions of database technology lead to data mining? d. Describe the steps involved in data mining when viewed as knowledge discovery process?	Understanding	CO1
2.Discuss briefly about data smoothing techniques?	Creating	CO1
3.List and describe the five primitives for specifying the data mining tasks?	Analyzing	CO1
4.Define data cleaning? Express the different techniques in handling the missing values?	Understanding	CO1

5.Explain mining of huge amount of data (eg: billions of tuples) in comparison with mining a small amount of data (Eg: data set of few hundred of tuples).	Analyzing	CO1
--	-----------	-----

UNIT-2

Short Answer Questions

QUESTIONS	Blooms taxonomy level	Course Outcomes
1.Explain the frequent item set?	Understanding	CO2
2. Explain about maximal frequent items set and closed item set?	Knowledge	CO2
3.Name the steps in association rule mining?	Understand	CO2
4.Explain the efficiency of APRIORI algorithm	Analyze	CO2
5.Define item set? Interpret the support and confidence rules for item set A and item set B?	Understand	CO2

Long Answer Questions

1.Discuss which algorithm is an influential algorithm for mining frequent item sets for Boolean association rules? Explain with an example?	Analysis	CO2
2.Describe the FP-growth algorithm with an example?	Analysis	CO2
3.Explain how to mine frequent item sets using vertical data format?	Understand	CO2
4.Explain how to mine the multi dimensional association rules from relational data bases and data ware houses?	Understand	CO2
5.Explain the APRIORI algorithm with an example?	Analysis	CO2

UNIT-3

Short Answer Questions

QUESTIONS	Blooms taxonomy level	Course Outcomes
1.State classification and define regression analysis?	Understand	CO2
2.Name the steps in data classification and define training tuple?	Knowledge	CO2
3.Explain the IF-THEN rule in classification?	Analysis	CO3
4.What is tree pruning and define the Naïve Bayes classification?	Knowledge	CO3
5.Explain the decision tree?	Understand	CO3

Long Answer Questions

1.Explain about the classification and discuss with an example?	Analysis	CO2
2.Summarize how does tree pruning work? What are some enhancements to basic decision tree induction?	Understanding	CO2
3.Describe the working procedures of simple Bayesian classifier?	Analysis	CO3

4. Discuss about Decision tree induction algorithm?	Evaluate	CO3
5. Explain about IF-THEN rules used for classification with an example and also discuss about sequential covering algorithm?	Knowledge	CO3

UNIT-4

Short Answer Questions

QUESTIONS	Blooms taxonomy level	Course Outcomes
1. Define clustering?	Knowledge	CO3
2. Illustrate the meaning of cluster analysis?	Knowledge	CO3
3. Explain the different types of data used in clustering?	Knowledge	CO4
4. Explain the fields in which clustering techniques are used?	Understand	CO4
5. State the hierarchical methods?	Understand	CO4

Long Answer Questions

1. Discuss various types of data in cluster analysis?	Analysis	CO3
2. Explain the categories of major clustering methods?	Understand	CO3
3. Explain in brief about k-means algorithm and portioning in k-means?	Analysis	CO4
4. Describe the different types of hierarchical methods?	Knowledge	CO4
5. Discuss about the outliers? Explain the weakness and strengths in hierarchical clustering methods?	Knowledge	CO4

UNIT-5

Short Answer Questions

QUESTIONS	Blooms taxonomy level	Course Outcomes
1. Define Web mining and text mining?	Knowledge	CO4
2. Write a short note on web content mining.	Understand	CO4
3. What are the features of Unstructured text mining.	Knowledge	CO4
4. Write a short note on web structure mining.	Understand	CO4
5. Write a short note on web usage mining.	Understand	CO4

Long Answer Questions

1. Explain about authoritative and Hub pages?	Knowledge	CO4
2. Give taxonomy of web mining activities. For what purpose web usage mining is used?	Understand	CO4
3. What activities are involved in web usage mining?	Knowledge	CO4
4. Explain Episode rule discovery for texts.	Knowledge	CO4
5. Write a short note on Text clustering.	Understand	CO4

Objective Questions:

UNIT-1

1. The Synonym for data mining is
 - (a) Data warehouse
 - (b) **Knowledge discovery in database**
 - (c) ETL
 - (d) Business intelligence
2. Data transformation includes which of the following?
 - a) A process to change data from a detailed level to a summary level
 - b) A process to change data from a summary level to a detailed level

UNIT-2

1. Association rules are always defined on _____.
A. Binary attribute. B. Single attribute. C. Relational database. D. Multidimensional attribute.
2. _____ is data about data.
A. Metadata. B. Microdata. C. Minidata D. Multidata.
3. Which of the following is the data mining tool?
A. C. **B. Weka.** C. C++. D. VB.
4. Capability of data mining is to build _____ models.
A. Retrospective. B. Interrogative. **C. Predictive.** D. Imperative.
5. The _____ is a process of determining the preference of customer's majority.
A. Association. **B. Preferencing.** C. segmentation. D. classification.

UNIT-3

1. Another name for an output attribute.
 - a. predictive variable
 - b. independent variable
 - c. estimated variable
 - d. dependent variable
2. Classification problems are distinguished from estimation problems in that
 - a. classification problems require the output attribute to be numeric.
 - b. classification problems require the output attribute to be categorical.
 - c. classification problems do not allow an output attribute.
 - d. classification problems are designed to predict future outcome.
3. Which statement is true about prediction problems?
 - a. The output attribute must be categorical.
 - b. The output attribute must be numeric.
 - c. The resultant model is designed to determine future outcomes.
 - d. The resultant model is designed to classify current behavior.
4. Which statement about outliers is true?
 - a. Outliers should be identified and removed from a dataset.
 - b. Outliers should be part of the training dataset but should not be present in the test data.
 - c. Outliers should be part of the test dataset but should not be present in the training data.
 - d. The nature of the problem determines how outliers are used.
 - e. More than one of a,b,c or d is true.

5. Which statement is true about neural network and linear regression models?

- Both models require input attributes to be numeric.
- Both models require numeric attributes to range between 0 and 1.
- The output of both models is a categorical attribute value.
- Both techniques build models whose output is determined by a linear sum of weighted input attribute values.
- More than one of a,b,c or d is true.

Unit IV

Multiple Choice Questions

- A trivial result that is obtained by an extremely simple method is called _____.
- K-nearest neighbor is one of the _____.
A. learning technique. B. OLAP tool. C. **purest search technique**. D. data warehousing tool.
- Enrichment means _____.
A. **adding external data**. B. deleting data. C. cleaning data. D. selecting the data.
- Clustering methods are _____.
A. Hierarchical. B. Agglomerative. C. PAM algorithm. D. K-nearest neighbor. E. **All the above**

UNIT-V

- HITS abbreviation in Web Structure?
a. Hyperlink-Index Topic Search b. **Hyperlink-Induces Topic Search**
c. Hyperlink-Identification Text Search d. Hyperlink-Index Text Search
- Preprocessing Web log activity is?
a. Count patterns that occur in sessions b. **Remove extraneous Information**
c. Count Page references d. Pattern Setting
- Periodic Crawler defines?
a. **Visits Portions of the Web** b. Selectively searches the Web
c. Visits pages related to a particular subject d. Collect Information from visited pages
- Which is assigns relevance score to each page based on crawl topic?
a. Distiller b. Hub pages
c. **Hypertext Classifier** d. scores
- What is main Objective of web mining?
a. Web Component, Score and Usage Mining b. Web Control, Text and Utility Mining
c. Web Content, Score and Utility Mining d. **Web Content, Structure and Usage**

Fill in the blanks:

Unit 1

- Data Mining** _____ predicts future trends & behaviors, allowing business managers to make proactive, knowledge-driven decisions
- Data Cleaning is a process that removes ...**outliers**.....
- The output of KDD is **useful information**
- Data Discrimination** is a comparison of the general features of the target class data objects against the general features of objects from one or multiple contrasting classes
- Strategic value of data mining is **time-sensitive**

Unit 2

1. Referencing is a process of determining the preference of customer's majority.
2. Data Mart is a metadata repository
3. The two steps in Apriori includes ...join..... andprune.....
4. FP Growth stands for**Frequent pattern growth**.....
5. Use normalization by decimal scaling to transform the value 35 for age.....**0.35**.....

Unit 3

1. **Classification** is the process of finding a model (or function) that describes and distinguishes data classes or concepts.
2. **Data mining** methods discard outliers as noise or exceptions.
3. **Prediction** also used for to know the unknown or missing values.
4. In a decision tree, leaf nodes represent **class labels or class distribution**.
5. **Decision Tree** is constructed in a top-down recursive divide-and-conquer manner.

Unit 4:

1. A **cluster analysis** is the process of analysing the various clusters to organize the different objects into meaningful and descriptive object.
2. ...Agglomerative..... clustering follows bottom up strategy
3. PAM means... “partition around medoids”.....
4. Bayesian classifiers exhibited **high accuracy** and **speed** when applied to large databases.
5. Most data mining methods discard outliers as noise or exceptions.

Unit 5:

1. **Hub Pages** Contain links to many relevant pages
2. **PageRank, CLEVER** Techniques used in Web Structure Mining
3. **Weighting** is used to provide more importance to backlinks coming from important pages
4. PageRank equation **$PR(p)=c(PR(1)/N1 + \dots + PR(n)/Nn)$**
5. What is the use of CLEVER? **Finding both Authoritative and Hub pages.**

XI.WEBITES:

1. www.autonlab.org/tutorials : Statistical Data mining Tutorials
2. www-db.stanford.edu/~ullman/mining/mining.html : Data mining lecture notes
3. ocw.mit.edu/ocwweb/slon-School-of-management/15-062Data-MiningSpring2003/coursehome/index.htm: MIT Data mining open courseware

XII.EXPERT DETAILS:

1. Jiawei Han, Abel Bliss Professor, Department of Computer Science, Univ. of Illinois at Urbana-Champaign Rm 2132, Siebel Center for Computer Science
2. Michelinkamber, Researcher, Master's degree in computer science (specializing in artificial intelligence) from Concordia University, Canada

3. Arun k pujari , Vice Chancellor , Central University Of Rajasthan - Central University Of Rajasthan

XIII.JOURNALS:

1. Data warehousing, data mining, OLAP and OLTP technologies are essential elements to support decision-making process in Industries
2. Effective navigation of query results based on concept hierarchy
3. Advanced clustering data mining text algorithm

XIV.LIST OF TOPICS FOR STUDENT SEMINARS:

1. Fundamentals of Data Mining
2. Data Mining functionalities
3. Classification of data mining system
4. Pre-processing Techniques
5. APRIORI Algorithm
6. FP-Growth Algorithm
7. Spatial data mining
8. Web mining
9. Trends and applications of data mining
10. Text mining

XV.CASE STUDIES / SMALL PROJECTS:

Case study-1:

Search queries on biomedical databases, such as PubMed, often return a large number of results, only a small subset of which is relevant to the user. Ranking and categorization, which can also be combined, have been proposed to alleviate this information overload problem. Results categorization for biomedical databases is the focus of this work. A natural way to organize biomedical citations is according to their MeSH annotations. First, the query results are organized into a navigation tree.