

BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY

Ibrahimpatnam - 501 510, Hyderabad

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOMES (COs)

B.TECH – ELECTRONICS AND COMMUNICATION ENGINEERING

JNTUH: R13 REGULATIONS

Code	Course Name	Course Outcomes
		I B. Tech
A10001	English	 At the end of this course, each student should be able to: CO1. Understand the value of English as an international language, as a Lingua-Franca and try to improve their knowledge regarding language skills and elements to be perfect in their usage. CO2. Usage of English Language, written and spoken. CO3. Enrichment of comprehension and fluency CO4. Gaining confidence in using language in verbal situations. CO5. Develop the ability to analyze the language used in descriptions and narrations.
A10002	Mathematics – I	 At the end of this course, each student should be able to: CO1. Able to write the matrix representation of a set of linear equations and to analyze solutions of system of equations. CO2. Able to understand the methods of differential calculus to optimize single and multivariable functions. CO3. Able to evaluate the multiple integrals and can apply the concepts to find the areas, volumes, moment of inertia etc., of regions on a plane or in space. CO4. Able to identify the type of differential equation and uses the right method to solve the differential equation. Also able to apply the theory of differential equations to the real world problems. CO5. Able to solve certain differential equations using Laplace transform. Also able to transform functions on time domain to frequency domain using Laplace transforms.
A10003	Mathematical Methods	 At the end of this course, each student should be able to: CO1. Able to predict the value of the data at an intermediate point and by curve fitting, can find the most appropriate formula for a guessed relation of the data variables. This method of analysis data helps engineers to understand the system for better interpretation decision making. CO2. Able to find a root of a given equation and will be able to find a numerical solution for a given differential equation. CO3. Helps in describing the system by an ODE, if possible. Also, suggests to find the solution as a first approximation. CO4. Able to find the expansion of a given function by Fourier series and Fourier transform of the function. CO5. Helps in phase transformation, phase change and attenuation coefficients in acoustics. CO6. Able to find a corresponding partial differential equation for an unknown function with many independent variables and to find their solution.

Code	Course Name	Course Outcomes
A10004	Engineering	At the end of this course, each student should be able to:
	Physics	CO1. The student would be able to learn the fundamental concepts
		on behavior of crystalline solids.
		CO2. The knowledge on fundamentals of Quantum Mechanics,
		sustants like Communications Solar Calls. Photo Calls and
		so on
		CO3 Design Characterization and study of properties of materials
		help the student to prepare new materials for various
		Engineering applications.
		CO4. This course also helps the student exposed to non-
		destructive testing methods.
		CO5. Finally, engineering physics course helps the student to
		develop problem solving skills and analytical skills.
A10005	Engineering	At the end of this course, each student should be able to:
	Chemistry	COI. Extrapolate the knowledge of cell, electrode, cathode, anode,
		coo Evalors the angineering applications of polymeric meteriols
		CO3 Develop awareness about the usage of conducting polymers
		as an engineering material
		CO4. Justify the immense importance of basic constructional
		material, Portland cement in Civil Engineering works.
		CO5.Summarize the application of phase rule to one and two
		component systems.
A10501	Computer	At the end of this course, each student should be able to:
	Programming	CO1. Identify and understand the working of key components of a
		computer system.
		co2. Develop algorithms and nowcharts for solving mathematical
		CO3 Design programs involving decision structures loops and
		functions.
		CO4. Use structured data types and the concept of arrays in simple
		data processing applications.
		CO5. Understand the concept of recursion and describe its
		implementation using a stack.
		CO6. Understand simple data structures, use of pointers, memory
A 10301	Engineering	At the end of this course, each student should be able to:
A10501	Drawing	CO1 Identify the basic concepts of Engineering Drawing
	Diawing	CO2. Construct various conic sections, cycloids and scales.
		CO3. Apply the principles of orthographic projections to
		projections of points and lines.
		CO4. Sketch different sections and sectional views of solids.
		CO5. Show the orthographic projection of the isometric views.
		CO6. Design the perspective projections of various points, lines,
A 10701		plane figures and simple solids.
A10581	Computer Programming Lab	At the end of this course, each student should be able to:
	Frogramming Lab	CO2 Choose the appropriate data structure and algorithm design
		method for a specified application
		CO3. Implement linear data structures such as lists stacks queues
		CO4. Implement simple searching and sorting methods.

Code	Course Name	Course Outcomes
		CO5. Understand which algorithm or data structure to use in
		different scenarios.
		CO6. Write complex applications using structured programming
4.10001	F · ·	methods.
A10081	Engineering Dhysics/Engineerin	At the end of this course, each student should be able to:
	g Chemistry I ab	CO1 Understand the concept of error and its analysis
	g Chemistry Lab	CO2 Compare the theory and correlate with experiment
		CO3. Understand the applications of physics experiments in day to
		day life
		Chemistry Lab:
		CO4. Develop experimental skills to design new experiments in
		Engineering. c. Exposure to these experiments the student
		can compare the theory and correlate with experiment.
		CO5. Estimate the number of free ions, charge & mobility of ions
		in the mixture of acids using conductivity meter and also
		CO6 Determine the presence and quantity of impurities in water
		and he can estimate amount of metal in metalores
A10083	English Language	At the end of this course, each student should be able to:
	Communication	CO1. Ability to discuss role and importance of communication
	Skills Lab	skills and learn to make use of various forms of
		communication in their respective professional fields.
		CO2. Ability to use communication tool to be an effective team
		leader or team member.
		CO3. Ability to use communication modes as a tool for success in
		CO4 Ability to present in various social and professional
		situations formally
		CO5. Ability to analyze and share the ideas by various media of
		information transfer.
		CO6. Ability to design various behavioral aspects in relation to
		problem solving.
A10082	IT Workshop/	At the end of this course, each student should be able to:
	Engineering	Engineering Workshop
	worksnop	CO1. Prepare various jobs with Carpentry trade and fitting trade.
		CO3 Produce various patterns with foundry techniques
		CO4. Combine various metal pieces with the techniques.
		welding.
		CO5. Identify various power tools in construction, wood working,
		electrical and mechanical engineering.
		CO6. Recognize the methods of plumbing.
		IT Workshop
		CO1. Understand various aspects of information technology.
		CO2. Demonstrate capability to work with Lalex.
		U.B. Toob I Somestor
A 20007	Mathematica III	CO1 Solva Cauchy's and Lagandra's differential equations
A30007	mainematics -III	CO1. Solve Cauchy's and Legendre's differential equations CO2 Identifying ordinary points singular points and regular
		singular points for the given ODE.
		CO3. Determine the solution of ordinary differential equations

Code	Course Name	Course Outcomes
		 in series form, Frobenius method to obtain a series solution for the given linear ODE. CO4. Identify Bessel equation and Legendre equation and solve them under special conditions with the help of series solutions method. CO5. Analyze the complex functions with reference to their analyticity, Integration using Cauchy's integral theorem. CO6. Identify the conditions for a complex variable function to be analytic and/or harmonic.
A30405	Probability and Statistics	 CO1. Identify distribution in certain realistic situation. CO2. Differentiate among many random variables involved in the probability models. CO3. Calculate mean and proportions (small and large sample) and to make important decisions from few samples which are taken out of unmanageably huge populations. CO4. Find the expected queue length, the ideal time, the traffic intensity and the waiting time. CO5. Understand the random process, Markov process and Markov chains which are essentially models of many time dependent processes such as signals in communications, time series analysis, queuing systems. CO6. Find the limiting probabilities and the probabilities in nth state.
A30406	Signals and Systems	 CO1. Understand the principles of vector spaces, including how to relate the concepts of basis, dimension, inner product, and norm to signals. Know how to analyze, design, approximate, and manipulate signals using vector-space concepts. CO2. Understand and classify signals (e.g. periodic, even) and systems (e.g. causal, linear) and an understanding of the difference between discrete and continuous time signals and systems, understand the principles of impulse functions, step function and signum function CO3. Analyze the implications of linearity, time-invariance, causality, memory, and bounded-input, bounded-out (BIBO) stability. CO4. Determine the response of linear systems to any input signal by convolution in the time domain, and by transformation to the frequency domain, filter characteristics of a system and its bandwidth, theconcepts of auto correlation and cross correlation and power density spectrum. CO5. Understand the definitions and basic properties (e.g. timeshift, modulation, Parseval's Theorem) of Fourier series, Fourier transforms, Laplace transforms, Z transforms, and an ability to compute the transforms and inverse transforms. CO6. Analyze the Sampling theorem, reconstruction, aliasing, and Nyquist's theorem to represent continuous-time signals in discrete time so that they can be processed by digital
A30482	Switching Theory and logic Design	CO1. Understand number systems, binary addition and subtraction, 2's complement representation and

Code	Course Name	Course Outcomes
		operations with this representation and understand the
		different binary codes
		CO2. Explain switching algebra theorems and apply them
		for logic functions
		CO3. Identify the importance of SOP and POS canonical
		forms in the minimization or other optimization of
		Boolean formulas in general and digital circuits
		CO4. Discuss about digital logic gates and their properties
		CO5. Evaluate functions using various types of minimizing
		algorithms like Boolean algebra, Karnaugh map or
		tabulation method.
		CO6. Analyze the design procedures of Combinational logic
1 20 40 4		circuits
A30404	Electronic Devices	COI. Understand the operation of various semiconductor
	and Circuits	diodes
		CO2. Understand the function of diade as restifier
		CO4. A nolvize and design various regifier singuits
		CO5. Understand the operation of transistors in different
		configurations
		CO6 Analyze and design amplifier circuits and oscillators
		employing BIT FFT devices
A 30204	Flectrical Circuits	CO1 Define basic electrical concepts including electric charge
1130204	Electrical Circuits	current electrical potential electrical Power and energy
		CO2 Distinguish the relationship of voltage and current in
		resistors, capacitors, inductors, and mutual Inductors
		CO3. Differentiate circuits with ideal, independent, and controlled
		voltage and current sources and able to apply Kirchhoff's
		voltage and current laws to the analysis of electric circuits.
		CO4. Illustrate to apply concepts of electric network topology,
		nodes, branches, and loops to solve circuit problems,
		including the use of computer simulation
		CO5. Emphasize on basic laws and techniques to develop a
		working knowledge of the methods of analysis are used.
		CO6. Interpret to solve series and parallel magnetic circuits
		II B. Tech II Semester
A40009	Environmental	CO1. Determine the Natural resources on which the structure of
	Studies	development is raised for sustainability of the society
		through equitable maintenance of natural resources.
		CO2. Illustrate about biodiversity that raises an appreciation and
		deeper understanding of species, ecosystems and also the
		interconnectedness of the living world and thereby avoids
		the mismanagement, misuse and destruction of biodiversity.
		CO3. Summarize a methodology for identification, assessment
		and quantification of global environmental issues in order to
		create awareness about the international conventions for
		mitigating global environmental problems
		CO4. Sustainable development that aims to meet raising human
		needs of the present and future generations through
		preserving the environment
		CO5. Outline green environmental issue provides an opportunity
		to overcome the current global environmental issues by

Code	Course Name	Course Outcomes
		implementing modern techniques like CDM, green building, green computing etc.
A40415	Pulse and Digital Circuits	CO1. Understand the linear wave shaping circuits like high pass circuits for various input signals.CO2. Understand the linear wave shaping circuits like low
		pass RC circuits for various input signals
		CO3. Analyze the application of attenuators. CO4. Understand the non-linear wave shaping circuits like
		clippers diodes and transistors.
		clampers using diodes.
		CO6. Analyze the clamping circuit theorem.
A40412	Electronic Circuit Analysis	CO1. Analyze various transistor amplifier circuits and their freq. responses at low, mid and high frequencies.
		CO2. Designing amplifier circuits using BJTs.
		feedback in electronic circuits.
		CO4. Design, construct & analyze oscillator circuits to generate
		signals in various frequency ranges. CO5. Design different types of power amplifiers for practical
		applications of desired specifications.
4.40.410		CO6. Understand the concepts MOS characteristics and amplifier
A40410	Digital Design	CO2 Describe various constructs and features in Verilog HDI
	using verifog HDL	CO3. Model various designs in gate level modeling
		CO4. Model various designs in gate level modeling
		CO5. Construct Test benches examine the functionality of the
		designs using behavioral model CO6 Synthesize RTL models to Standard cell libraries and
		FPGAs
A40411	Electromagnetic Theory and	CO1. Understand and design the electrical machines based on the concept of electrostatics.
	Transmission Lines	CO2. Generate modified equations for boundaries and Medias
		CO3. Design the long time charge storage devices
		CO4. Know the energy storage design of high magnetic field
		CO5. Understand and development of Maxwell's equation for
		dielectric and conducting media
		CO6. Understand the design of long length transmission lines for
A 40215	Dringinlag of	point to point communications
A40213	Electrical	circuits.
	Engineering	CO2. Apply the basic fundamentals to construct and operate DC
		generators, DC Motors, transformers.
		CO3. Develop the basic skills needed to perform and design experimental projects.
		CO4. Apply the principles to form simple electric apparatus and
		machinery that are of use in practical situations.
		solution, taking advantage of diverse technical knowledge
		CO6. Impart knowledge of electrical engineering principles along

Code	Course Name	Course Outcomes
		with the required supporting knowledge of computing,
		ULP. Tech I Semester
4.50.419	A store set 1 XV	CO1 Array of the assured a consideration of a
AJ0416	propagation	 CO1. Awate of the parameter consideration viz. antenna efficiency, beam efficiency, radiation resistance etc. in the design of an antenna CO2. Capable of analyze the designed antenna and field evaluation under various conditions and formulate the electric as well as the magnetic fields equations set for far field and near field conditions
		 CO3. Capable of analyze the designed antenna and field evaluation under various conditions and formulate the electric as well as the magnetic fields equations set for far field and near field conditions. CO4. Understand and design issues, operation of fundamental antennas like Vagi IIda Horn antennas and Helical
		cCO5. Design a lens structure and also the bench setup for antenna parameters measurement of testing for their effectiveness
		CO6. Knowledge about the means of propagation of Electromagnetic wave i.e. free space propagation and also about frequency dependent layer selection, its respective issues for an effective transmission of information in the form of EM wave to a remote location and related issues.
A50408	Analog Communications	 CO1. Understand the baseband signal and system CO2. Design procedure of AM transmission and reception, Analyze, Measure and Evaluate the performance of a Telecommunication system against given criteria CO3. Understand basic knowledge of FM transmission and reception CO4. Understand various types of VSB transmission and reception CO5. Design Tuned Radio frequency receiver and Super Heterodyne receiver CO6. Understand the concepts of generation of PAM,PPM,PWM
A50425	Linear and Digital IC Applications	 COI: Understand the concepts of generation of 11 ma, 11m, 11m, 11m, 11m, 11m, 11m, 11
A50516	Computer Organization and	CO1. Describe organization of digital computers and explain the basic principles and operations of different components

Code	Course Name	Course Outcomes
	Operating systems	CO2. Identify the operation of the arithmetic unit including the
		algorithms and implementation of fixed-point and floating-
		point addition, subtraction, multiplication and division.
		CO3. Compare various data representations and understand how
		arithmetic and logical operations are performed by
		CO4 Differentiate Instruction formate classification based on
		number of operands size of instruction and way of
		accessing the data
		CO5. Identify different I/O data transfer techniques with
		performance comparison
		CO6. Demonstrate how computing resources are used by
		application software and managed by system software
A50422	Electronic	CO1. Describe the fundamental concepts and principles of
	Measurements and	instrumentation
	Instrumentation	CO2. Explain the operations of the various instruments required
		in measurements
		CO3. Apply the measurement techniques for different types of
		tests
		function
		CO5 Understand principle of operation, working of different
		electronic instruments like digital multi meter ohumeters
		CO6. Apply knowledge of different Oscilloscopes like CRO.
		DSO
A50217	Control Systems	CO1. Understand and analyze the operation of open loop and
		closed loop systems
		CO2. Analyze transfer functions for electro-dynamic plants and
		machines, with electrical, electro-mechanical, electro-
		pneumatic, and electro-hydraulic elements from plant site
		collected data
		CO3. Understand and analyze the stability of a system in S –
		CO4 Analyze the control systems in the frequency domain and
		solve the problems related to compensation techniques
		CO5. Understand the problems relating to stability of control
		systems and formulate state model to electrical and electro
		mechanical plants and evaluate plant response to particular
		inputs
		CO6. Understand state space analysis and its applications
		III B. Tech II Semester
A60420	Digital	CO1. Understand the basic concepts of digital communications
	Communications	with an insight into practical applications
		CO2. Identify the importance of conversion of analog signals in
		to digital domain
		CO3. Differentiate between PCM and DM and to know their
		usage in specific applications
		CO4. Compare and contrast ASK, FSK, PSK digital carrier
		modulation schemes in terms of occupied bandwidth,
		for improved spectral efficiency
		CO5 Apply the basics of information theory to calculate channel
		cost apply the busies of information theory to calculate chaliner

Code	Course Name	Course Outcomes
		capacity and other measures
		CO6. Distinguish between source coding and channel coding for
		optimization of discrete memory-less source (DMS), with
A (0.120		error-tree/min error transmission of data over a channel
A60430	Microprocessors	intersection and integration with 8086 and software
	and Micro	CO2 Understand the memory organization and interrupts of
	controllers	processors/ micro-controllers helps in various system
		designing aspects
		CO3. Design and conduct experiments related to microprocessor/
		microcontroller based system design
		CO4. Identify the significance of serial communication in8086
		CO5. Identify the significance of interrupts / serial
		communication, real time functionality in 8051
		CO6. Understand the internal architecture and operation of
		advanced microcontrollers
A60010	Managerial	CO1. Describe the economic activities performed by the
	Economics and	businessmen in the business for profit earning
	Financial Analysis	CO2. Understand the significance of demand, its analysis,
		measurement of demand and its forecasting
		Droduction Function
		COA Design and implement different structures of market
		covering how price is determined under different market
		structures
		CO5. Analyze different forms of business organizations
		existing in the modern business
		CO6. Describe the allocation of capital which plays a vital role
		in a business organization
A60432	VLSI Design	CO1. Acquire qualitative knowledge about the fabrication
		process of integrated circuit using MOS transistors
		CO2. Choose an appropriate inverter depending on
		specification required for a circuit.
		CO3. Draw the layout of any logic circuit which helps to
		CO4 Design different types of logic actes using CMOS
		inverter and analyze their transfer characteristics
		CO5 Provide design concept required to design building
		blocks of data path using gates
		CO6. Design simple logic circuit using PLA. PAL. FPGA and
		CPLD
A60421	Digital Signal	CO1. Understand how digital to analog (D/A) and analog to
	Processing	digital (A/D) converters operate on a signal and be able
		to model these operations mathematically
		CO2. Perform time, frequency and Z-transform analysis on
		signals and LTI systems and study the properties like
		stability, causality, time-invariance and etc.
		CO3. Understand the inter-relationship between DFT and
		various transforms
		and offects of round off errors
		and effects of round-off efforts
		UOS. Design of infinite impulse response filters for a given

Code	Course Name	Course Outcomes
		specification
		CO6. Understand the fast computation of DFT and appreciate
		IV D. Track J. Samuerter
		IV B. Tech I Semester
A70434	Cellular and	COI. Identify the limitations of conventional Mobile
	Communication	mobile system
	Communication	CO2. Understand the concept of frequency Reuse channels.
		Deduce the Co-channel interference reduction factor
		CO3. Explain Co-channel interference
		CO4. Explain adjacent channel interference, near end far end
		interference and UHF TV interference
		CO5. Understand cell coverage for signal and traffic
A70442	Microwaya	COL Analyza waya propagation in TE TM or TEM modes in
A70442	Engineering	structures such as rectangular waveguides
	Linginicoring	CO2. Compare the passive microwave components and
		applications such as directional couplers, power divider/
		combiner and etc., with given characteristics
		CO3. Understand the characteristics of slow wave structures
		CO4. Differentiate the performance characteristic of a
		CO5 Compare different types of magnetrons and their
		characteristics
		CO6. Understand the microwave bench setup for measuring
		microwave parameters
A70014	Management	CO1. Exercise critical thinking to propose, communicate, and
	Science	implement, action plan that address opportunities and
		15SUES
		contemporary management practices while taking into
		account all relevant stakeholders
		CO3. Observe and recognize behaviors in organizational
		settings to aid in predicting outcomes
		CO4. Gain personal and professional insight into
		organizational behavior, diversity, personalities, goal
		CO5 Demonstrate an understanding of the importance of
		values, ethics, and social responsibility for the self and
		for contemporary society
		CO6. Reflect on how values shape personal and community
		ethics and decision-making. An ability to function
A 70440	Emboddod Santan	effectively on multi-disciplinary teams (team work).
A/0440	Design	CO2 Apply and analyze the applications in various processors
	DV31511	and domains of embedded system
		CO3. Remember the definitions of ASICs, PLDs, memory, and
		memory interface
		CO4. Analyze to understand real time operating systems with
		examples and Ability to learn debugging techniques for an
		embedded system
		COS. Analyze to understand different concepts of a CIOS,

Code	Course Name	Course Outcomes
		sensors, memory interface, communication interface
		CO6. Analyze to learn how to design RTOS in embedded systems
		and to document their designs and explain them to others
A70515	Computer	CO1. Understand the basics of Computer Networks and various
	Networks	protocols
		CO2. Understand the World Wide Web concepts
		a Network system
		CO4 Discuss the different internetworking devices and their
		functions
		CO5. Analyze the services and features of the various layers of
		data networks
		CO6. Analyze the features and operations of various application
1.50.10.6	N 1 1 X	layer protocols such as HTTP, DNS, and SMTP
A70436	Digital Image	CO1. Explain the basic elements and applications of image
	Processing	processing
		frequency filters for image enhancement
		CO3. Explain the image segmentation and image compression
		problem
		CO4. Analyze image sampling and quantization requirements
		and implications
		CO5. Model the image restoration problem in both time and
		frequency domains
		CO6. Develop Wavelet based applications
		IV B. Tech II Semester
A80450	Radar Systems	CO1. Understand about radar fundamentals
		CO2. Analyze detectable ranges and parameters of general radar
		equation CO3 Understand the Doppler effect and the concepts of
		continuous wave radars
		CO4. Understand the FMCW Altimeter
		CO5. Analyze the operation of MTI and pulse Doppler radar
		CO6. Analyze the tracking radar systems and mono pulse radar
A80452	Satellite	CO1. Obtain different types of satellites
	Communications	CO2. Calculate the orbital determination and launching methods
		CO3. Develop commands, monitoring power systems and
		developments of antennas
		EDMA DAMA
		CO5 Design antennas to provide Uplink and Down link
		Frequency
		CO6. Demonstrate the impacts of GPS, Navigation, NGSO
		constellation design for tracking and launching
A80454	Wireless	CO1. Understand the principles and fundamentals of wireless
	Communications	communications
	and Networks	CO2. Understand cellular system design concepts in wireless
		mobile communication networks
		Propagation Mechanisms
		CO4. Analyze perspective on Fundamentals of Equalization and
		Mobile Radio Propagation Multipath Measurements
		moone radio i ropagation multipath measurements

Code	Course Name	Course Outcomes
		CO5. Analyze various multiple access schemes used in wireless
		communication
		CO6. Demonstrate wireless local area networks and their
		specifications and Understand wireless wide area networks
		and their performance analysis