# **MICROWAVE ENGINEERING**

# Subject Code: **(A70442)** Regulations : R16 JNTUH Class : IV Year B.Tech ECE I Semester



# **Department of Electronics and communication Engineering BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY**

Ibrahimpatnam -501 510, Hyderabad



# MICROWAVE ENGINEERING (A70442)

# COURSE PLANNER

## I. COURSE OVERVIEW:

The subject Microwave Engineering may be also referred to as Applied Electromagnetics. The importance of microwaves started way back in World War II period and later expanded its ways out to domestic (microwave oven), military, commercial, satellite and etc. This subject starts with the definition of microwave frequency range, its applications and its importance in modern era. The microwave transmission lines like waveguides (rectangular, circular), micro-strips etc. and the various microwave components like T-junctions, circulator, isolator etc. are discussed in detail to enable the student to design microwave systems and sub- systems.

## **II. PREREQUISITS:**

- 1. Electromagnetic Theory and Transmission Lines(EMTL)
- 2. Antennas and Wave Propagation

## **III. COURSE OBJECTIVES:**

| 1. | To develop the knowledge on transmission lines for microwaves, cavity resonators and waveguide components and applications.         |  |  |  |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 2. | To enable the students understand and analyze the operation of microwave tubes like klystron, magnetron, travelling wave tube, etc. |  |  |  |  |  |  |  |  |
| 3. | To familiarize with microwave solid state devices.                                                                                  |  |  |  |  |  |  |  |  |
| 4. | To understand scattering matrix parameters and its use.                                                                             |  |  |  |  |  |  |  |  |
| 5. | To introduce the student the microwave test bench for measure different parameters like attenuation, VSWR, impedance etc.           |  |  |  |  |  |  |  |  |

## **IV. COURSE OUTCOMES:**

| S.No. | Description                                                                     | Bloom's Taxonomy                          |  |  |
|-------|---------------------------------------------------------------------------------|-------------------------------------------|--|--|
|       |                                                                                 | Level                                     |  |  |
| 1.    | Understand the significance microwaves and microwave transmission lines.        | Knowledge, Understand<br>(Level1, Level2) |  |  |
| 2.    | Design waveguide and micro strip transmission lines with given characteristics. | Apply, Create (Level 3,<br>Level 6)       |  |  |



| 3. | Analysis & design passive microwave components                                                                       | Analyze (Level 4)                         |
|----|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|    | such as directional couplers, power dividers /                                                                       |                                           |
|    | Combiner and etc, with given characteristics.                                                                        |                                           |
| 4. | Understand operating principles of basic passive and active microwave devices.                                       | Knowledge, Understand<br>(Level1, Level2) |
| 5. | Analysis the behavior and evaluate the performance<br>of the microwave components using Scattering<br>matrix theory. | Analyze (Level 4)                         |
| 6. | Conduct a microwave measurement experiment such as microwave impedance or SWR measurement.                           | Apply, Create (Level 3,<br>Level 6)       |

# V. HOW PROGRAM OUTCOMES ARE ASSESSED:

|     | Program Outcomes (PO)                                                                                                                                                                                                                                                                                                                                | Level | Proficiency<br>assessed by |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| PO1 | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems related to Electronics & Communication and Engineering.                                                                                                      | 3     | Assignments,<br>Exercises  |
| PO2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems related to Electronics & Communication Engineering and reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                     | 3     | Assignments                |
| PO3 | <b>Design/development of solutions</b> : Design solutions for complex engineering problems related to Electronics & Communication Engineering and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | 3     | Assignments,<br>Exercises  |
| PO4 | <b>Conduct investigations of complex problems</b> : Use research-<br>based knowledge and research methods including design of<br>experiments, analysis and interpretation of data, and synthesis<br>of the information to provide valid conclusions.                                                                                                 | 3     | Assignments                |
| PO5 | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                                                            | 3     | Assignments,<br>Seminars   |



|      |                                                                                                                                                                                                                                                                                                                       |       | 7                                        |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------|
|      | Program Outcomes (PO)                                                                                                                                                                                                                                                                                                 | Level | <b>Proficiency</b><br>assessed by        |
| PO6  | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the Electronics & Communication Engineering professional engineering practice.                                           | 2     | Seminars                                 |
| PO7  | <b>Environment and sustainability</b> : Understand the impact of the Electronics & Communication Engineering professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                       | 3     | Assignments,<br>Seminars                 |
| PO8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                                | -     | _                                        |
| PO9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                               | 2     | Oral<br>Discussions                      |
| PO10 | <b>Communication</b> : Communicate effectively on complex<br>engineering activities with the engineering community and with<br>society at large, such as, being able to comprehend and write<br>effective reports and design documentation, make effective<br>presentations, and give and receive clear instructions. | 3     | Document<br>Preparation,<br>Presentation |
| PO11 | <b>Project management and finance</b> : Demonstrate knowledge<br>and understanding of the engineering and management<br>principles and apply these to one's own work, as a member and<br>leader in a team, to manage projects and in multidisciplinary<br>environments.                                               | 3     | Assignments                              |
| PO12 | <b>Life-long</b> learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                              | 3     | Assignments                              |

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: None

# VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes                                                                                                                                                                                                                                                            | Level | Proficiency<br>assessed by |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| PSO 1 | <b>Professional Skills:</b> An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex | 3     | Lectures,<br>Assignments   |



|       | systems.                                                                                                                                                                                                                                                                         |   |                       |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------|
| PSO 2 | <b>Problem-Solving Skills:</b> An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.                                        | 2 | Tutorials             |
| PSO 3 | <b>Successful Career and Entrepreneurship:</b> An understanding of social-awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur. | 1 | Seminars,<br>Projects |

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: None

## VII. SYLLABUS:

## UNIT I

**MICROWAVE TRANSMISSION LINES:** Introduction, Microwave Spectrum and Bands, Applications of Microwaves. Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Filter Characteristics, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross-section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations.

#### **RECTANGULAR WAVE GUIDES:**

Power Transmission and Power Losses in Rectangular Guide. Related Problems. Impossibility of TEM mode. Micro strip Lines- Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor.

## UNIT II

**CAVITY RESONATORS**– Introduction, Rectangular and Cylindrical Cavities, Dominant Modes and Resonant Frequencies, Q factor and Coupling Coefficients. Related Problems.

WAVEGUIDE COMPONENTS AND APPLICATIONS - I : Coupling Mechanisms – Probe, Loop, Aperture types. Waveguide Discontinuities – Waveguide irises, Tuning Screws and Posts, Matched Loads. Waveguide Attenuators – Resistive Card, Rotary Vane types; Waveguide Phase Shifters – Dielectric, Rotary Vane types. Waveguide Multiport Junctions – E plane and H plane Tees, Magic Tee, Hybrid Ring; Directional Couplers – 2 Hole, Bethe Hole types.

Ferrites- Composition and Characteristics, Faraday Rotation; Ferrite Components - Gyrator, Isolator, Circulator.

## UNIT III

**MICROWAVE TUBES** – : Limitations and Losses of conventional tubes at microwave frequencies. Microwave tubes – O type and M type classifications. O-type tubes : 2 Cavity Klystrons – Structure, Reentrant Cavities, Velocity Modulation Process and Applegate Diagram, Bunching Process and Small Signal Theory – Expressions for o/p Power and Efficiency. Reflex Klystrons – Structure, Applegate Diagram and Principle of working, Mathematical Theory of Bunching, Power Output, Efficiency, Electronic Admittance;



Oscillating Modes and o/p Characteristics, Electronic and Mechanical Tuning. Related Problems.

**HELIX TTS:** Significance, Types and Characteristics of Slow Wave Structures; Structure of TWT and Amplification Process (qualitative treatment), Suppression of Oscillations, Nature of the four Propagation Constants, Gain Considerations.

## UNIT IV

#### M-TYPE TUBES

Introduction, Cross-field effects, Magnetrons – Different Types, 8-Cavity Cylindrical Travelling Wave Magnetron – Hull Cut-off and Hartree Conditions, Modes of Resonance and PI-Mode Operation, Separation of PI-Mode, o/p characteristics.

**MICROWAVE SOLID STATE DEVICES:** Introduction, Classification, Applications. TEDs – Introduction, Gunn Diode – Principle, RWH Theory, Characteristics, Basic Modes of Operation, Oscillation Modes. Avalanche Transit Time Devices, Gunn oscillation modes, LSA Mode.

#### UNIT V

#### **MICROWAVE MEASUREMENTS**

Scattering Matrix– Significance, Formulation and Properties. S Matrix Calculations for – 2 port Junction, E plane and H plane Tees, Magic Tee, Directional Coupler, Circulator and IsolatorDescription of Microwave Bench – Different Blocks and their Features, Precautions; Microwave Power Measurement – Bolometer Method. Measurement of Attenuation, Frequency, VSWR, Cavity Q. Impedance Measurements.

## **TEXT BOOKS:**

- 1. Microwave Devices and Circuits Samuel Y. Liao, PHI, 3rd Edition, 1994.
- 2. Microwave Principles Herbert J. Reich, J.G. Skalnik, P.F. Ordung and H.L. Krauss, CBS Publishers and Distributors, New Delhi, 2004.

#### **REFERENCE BOOKS:**

- 1. Foundations for Microwave Engineering R.E. Collin, IEEE Press, John Wiley, 2nd Edition, 2002.
- 2. Microwave Circuits and Passive Devices M.L. Sisodia and G.S.Raghuvanshi, Wiley Eastern Ltd., New Age International Publishers Ltd., 1995.
- 3. Microwave Engineering Passive Circuits Peter A. Rizzi, PHI, 1999.
- 4. Electronic and Radio Engineering F.E. Terman, McGraw-Hill, 4th ed., 1955.
- 5. Elements of Microwave Engineering R. Chatterjee, Affiliated East-West Press Pvt. Ltd., New Delhi, 1988.
- 6. Micro Wave and Radar Engineering M. Kulkarni, Umesh Publications, 1998.

NPTEL Web Course: Microwave Theory and Techniques

NPTEL Video Course: Microwave Theory and Techniques



## GATE SYLLABUS:

S-parameters, pulse excitation. Waveguides: modes in rectangular waveguides; boundary conditions; cut-off frequencies.

## **IES SYLLABUS:**

Microwave Tubes and solid state devices, Microwave generation and amplifiers, Waveguides and other Microwave Components and Circuits, Misconstrue circuits, Microwave Antennas, Microwave Measurements, Masers, lasers; Microwave propagation. Microwave Communication Systems terrestrial and Satellite based.

|         |      |      | Topics                                                                                       | Course Learning Outcomes                                                                                 |           |
|---------|------|------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------|
| Session | Week | Unit |                                                                                              |                                                                                                          | Reference |
| 1       |      |      | Microwave Transmission Lines:<br>Introduction, Microwave Spectrum and<br>Bands               | Describe the Microwave.                                                                                  | T1,<br>R6 |
| 2       |      |      | Applications of Microwaves                                                                   | <b>List</b> out applications of Microwaves.                                                              | T1,<br>R6 |
| 3       | 1    | 1    | Rectangular Waveguides – TE/ TM<br>mode analysis                                             | Analyze the Rectangular<br>Waveguides – TE/ TM mode<br>analysis                                          | T1,<br>R6 |
| 4       |      |      | Rectangular Waveguides – TE/ TM<br>mode analysis                                             | Analyze the Rectangular<br>Waveguides – TE/ TM mode<br>analysis                                          | T1,<br>R6 |
| 5       |      |      | Rectangular Waveguides – TE/ TM<br>mode analysis                                             | Analyze the Rectangular<br>Waveguides–TE/ TM mode<br>analysis                                            | T1,<br>R6 |
| 6       |      |      | Expressions for Fields, Characteristic<br>Equation and Cut-off Frequencies                   | <b>Analyze</b> Mathematical Derivations<br>for various field configurations in<br>Rectangular Waveguides | T1,<br>R6 |
| 7       |      |      | Expressions for Fields, Characteristic<br>Equation and Cut-off Frequencies                   | <b>Analyze</b> Mathematical Derivations<br>for various field configurations in<br>Rectangular Waveguides | T1,<br>R6 |
| 8       | 2    |      | Filter Characteristics, Dominant and<br>Degenerate Modes                                     | Identify various types of Modes                                                                          | T1,<br>R6 |
| 9       |      |      | Sketches of TE and TM mode fields in the cross-section                                       | <b>Analyze</b> Spatial representation of Modes                                                           | T1,<br>R6 |
| 10      |      |      | Mode characteristics –Phase and Group<br>velocities & Wavelengths and<br>Impedance Relations | <b>Explain</b> Wavelengths and Impedance Relations                                                       | T1,<br>R6 |
| 11      |      |      | Mode characteristics – Phase and Group                                                       | Explain Wavelengths and                                                                                  | T1,       |

## VIII. COURSE PLAN (WEEK-WISE):



|           |   |   | velocities & Wavelengths and Impedance Relations                                                | Impedance Relations                                            | R6        |
|-----------|---|---|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------|
| 12        |   |   | Power Transmission and Power Losses<br>in Rectangular Guide, Related Problems                   | Summarize Power Transmission<br>and Power Losses in Waveguides | T1,<br>R6 |
| 13        | 3 |   | Power Transmission and Power Losses<br>in Rectangular Guide, Related Problems                   | Summarize Power Transmission<br>and Power Losses in Waveguides | T1,<br>R6 |
| 14        |   |   | Micro strip Lines–Introduction, Zo<br>Relations                                                 | Compare various parameters of<br>Microstrip Lines              | T2        |
| 15        |   |   | Effective Dielectric Constant                                                                   | Explain effective dielectric constant                          | T2        |
| 16        |   |   | Q factor, Cavity Resonators–<br>Introduction                                                    | Define Q factor                                                | T2        |
| 17        |   |   | Rectangular and Cylindrical Cavities                                                            | Classify various cavities                                      | T2        |
| 18        |   |   | Dominant Modes and Resonant<br>Frequencies                                                      | Analyze Mode Characteristics                                   | T2        |
| 19        | 4 |   | Q factor and Coupling Coefficients,<br>Related Problems.                                        | Distinguish Mode Characteristics                               | T2        |
| 20        |   |   | Waveguide Components and<br>Applications : Coupling Mechanisms –<br>Probe, Loop, Aperture types | List out various types of coupling                             | T2        |
| 21        |   |   | Waveguide Discontinuities –Waveguide<br>irises, Tuning Screws and Posts,<br>Matched Loads       | Illustrate waveguide discontinuities                           | T2        |
| 22        | F |   | Waveguide Attenuators – Resistive<br>Card, Rotary Vane attenuators                              | Define Attenuators                                             | T2        |
| 23        | Э |   | Waveguide Phase Shifters – Dielectric,<br>Rotary Vane types.                                    | Explain about Phase shifters                                   | T2        |
| 24-<br>25 |   | 2 | Waveguide Multiport Junctions – E<br>plane<br>and H plane Tees                                  | Compare different types of T<br>Junctions                      | T2        |
| 26        |   |   | Directional Couplers – 2 Hole, Bethe<br>Hole types, Problems.                                   | Explain Directional Coupler, Magic<br>Tee, Hybrid Ring         | T2        |
| 27        |   |   | Ferrites–Composition and Characteristics, Faraday Rotation                                      | Classify Ferrites and their<br>Characteristics                 | T2        |
| 28        | 6 |   | Ferrites–Composition and Characteristics, Faraday Rotation                                      | Classify Ferrites and their<br>Characteristics                 | T2        |
| 29        |   |   | Ferrite Components – Gyrator, Isolator                                                          | Distinguish Ferrite Components-<br>Gyrator, Isolator           | T2        |
| 30        |   |   | Ferrite Components – Gyrator, Isolator                                                          | Distinguish Ferrite Components-<br>Gyrator, Isolator           | T2        |
| 31        | 7 |   | Circulator. Scattering Matrix–<br>Significance, Formulation and<br>Properties.                  | Define Circulator                                              | T1        |
| 32        | , |   | S-Matrix Calculations for – 2 port<br>Junction, E plane and H plane Tees                        | Formulate T Junction S-Matrix derivation                       | T1        |
| 33        |   |   | S-Matrix Calculations for – 2 port                                                              | Formulate T Junction S-Matrix                                  | T1        |



|    |    |   | lunction Enlance and Unlance Teac          |                                             |    |
|----|----|---|--------------------------------------------|---------------------------------------------|----|
|    |    |   | Junction, Eplane and H plane lees          | derivation                                  |    |
| 34 |    |   | Magic Tee, Directional Coupler,            | Solve problems based on Ferrites            | T1 |
|    |    |   | Circulator and Isolator, Problems          |                                             |    |
| 25 |    |   | Magic Tee, Directional Coupler,            | Solve problems based on Ferrites            | Т1 |
| 55 |    |   | Circulator and Isolator, Problems          |                                             | 11 |
|    |    |   | Microwave Tubes: Limitations and           | Illustrate about Conventional Tubes         |    |
| 36 |    |   | Losses of conventional tubes at            |                                             | T1 |
|    |    |   | microwave frequencies                      |                                             |    |
|    |    |   | Microwave tubes – O type and M type        | Compare Microwaye tubes – O                 |    |
| 37 |    |   | classifications                            | type and Mitype classifications             | T1 |
|    |    |   |                                            |                                             |    |
| 38 | 8  |   | O-type tubes : 2 Cavity Riystrons –        | Categorize O-type tubes : 2 Cavity          | T1 |
|    |    |   | Structure, Reentrant Cavities              | Klystrons                                   |    |
| 39 |    |   | Velocity Modulation Process and            | Apply Velocity Modulation Process           | T1 |
|    |    |   | Applegate Diagram                          |                                             |    |
|    |    |   | Bunching Process and Small Signal          | Analyze Bunching Process and its            |    |
| 40 |    |   | Theory – Expressions for output Power      | mathematical treatment                      | T1 |
|    |    |   | and Efficiency                             |                                             |    |
|    |    | 2 | Reflex Klystrons – Structure, Applegate    | Examine Reflex Klystron Operation           |    |
| 41 |    | 3 | Diagram and Principle of working           | , ,                                         | 11 |
|    |    |   | Mathematical Theory of Bunching            | Formulate derivation of Klystron            |    |
| 42 |    |   | Power Output Efficiency                    | Parameters                                  | T1 |
|    |    |   | Oscillating modes and output               | <b>Classify</b> different oscillating modes |    |
| 12 | 0  |   | characteristics. Effect of repeller        | classify unreferit oscinating modes         | т1 |
| 45 | 9  |   |                                            |                                             | 11 |
|    |    |   |                                            |                                             |    |
| 44 |    |   | Significance, Types and Characteristics    | List out various types of Slow wave         | T1 |
|    |    |   | of Slow wave structures                    | Tubes                                       |    |
| 45 |    |   | Structure of TWT and Amplification         | Apply Structure of TWT and                  | T1 |
|    |    |   | Process (qualitative treatment)            | Amplification Process                       |    |
|    |    |   | Suppression of Oscillations, Gain          | Interpret Suppression of                    |    |
| 46 |    |   | Considerations                             | Oscillations, Learn about Gain              | T1 |
|    |    |   |                                            | Considerations                              |    |
| 47 |    |   | M-Type Tubes : Introduction, Crossfield    | Compare M-Type Tubes                        | Τ1 |
| 47 |    |   | effects, Magnetrons – Different Types      |                                             | 11 |
|    |    |   | 8-Cavity Cylindrical Travelling Wave       | Analyze 8-Cavity Cylindrical                |    |
| 48 | 10 |   | Magnetron – Hull Cut-off and Hartree       | Travelling Wave Magnetron and its           | T1 |
|    |    |   | Conditions                                 | characteristics                             |    |
|    |    |   | Modes of Resonance and PI-Mode             | <b>Identify</b> different modes in M        |    |
| ۵L |    |   | Operation Separation of PL-Mode            | Tuhes                                       | T1 |
| 45 |    |   | output characteristics                     | Tubes                                       | 11 |
| 50 |    | 4 | Deleted Broklams                           | Coluce Delated Droblems                     | 74 |
| 50 |    |   |                                            | Solve Related Problems                      | 11 |
| 51 |    |   | Microwave Solid State Devices:             | Demonstrate Introduction,                   | T1 |
|    |    |   | Introduction, Classification, Applications | Classification, Applications                | _  |
| 52 |    |   | TEDs – Introduction, Gunn Diode –          | Compare Transferred Electronic              | T1 |
| 2  | 11 |   | Principle, RWH Theory, Characteristics     | Devices                                     |    |
| гэ |    |   | Basic Modes of Operation, Oscillation      | <b>Examin</b> e basic modes of Operation,   | т1 |
| 55 |    |   | Modes                                      | Oscillation Modes                           | 11 |
| 54 |    |   | Avalanche Transit Time Devices –           | <b>Classify</b> Avalanche Transit Time      | T1 |
| L  |    |   | 1                                          | -                                           |    |



|    |    |   | Introduction                          | Devices                             |    |
|----|----|---|---------------------------------------|-------------------------------------|----|
|    |    |   | IMPATT and TRAPATT Diodes – Principle | Explain IMPATT and TRAPATT          |    |
| 55 |    |   | of Operation and Characteristics      | Diodes – Principle of Operation and | T1 |
|    |    |   |                                       | Characteristics                     |    |
| 50 |    |   | Classification, Applications          | Summarize Classification,           | TA |
| 50 |    |   |                                       | Applications                        | 11 |
|    |    |   | Microwave Measurements: Description   | Compare various types of            |    |
|    |    |   | of Microwave Bench – Different Blocks | microwave measurement               |    |
| 57 |    |   | and their Features Precautions;       | techniques and Classify various     | R6 |
|    |    |   | Microwave Power Measurement –         | types of Microwave Measurement      |    |
|    |    |   | Bolometer Method                      | Techniques                          |    |
|    |    |   | Microwave Measurements: Description   | Compare various types of            |    |
|    | 10 | 5 | of Microwave Bench – Different Blocks | microwave measurement               |    |
| 58 | 12 |   | and their Features Precautions;       | techniques and Classify various     | R6 |
|    |    |   | Microwave Power Measurement –         | types of Microwave Measurement      |    |
|    |    |   | Bolometer Method                      | Techniques                          |    |
|    |    |   | Measurement of Attenuation            | Illustrate various types of         |    |
| 59 |    |   |                                       | Microwave Measurement               | R6 |
|    |    |   |                                       | Techniques                          |    |
|    |    |   | Frequency standing wave               | Illustrate various types of         |    |
| 60 |    |   | measurements- measurement of low      | Microwave Measurement               | R6 |
|    |    |   | VSWR, measurement of high VSWR        | Techniques                          |    |
|    |    |   | Frequency standing wave               | Illustrate various types of         |    |
| 61 |    |   | measurements- measurement of low      | Microwave Measurement               | R6 |
|    | 10 |   | VSWR, measurement of high VSWR        | Techniques                          |    |
|    | 13 |   | Measurement of Cavity Q & Impedance   | Explain measurement of Q and        |    |
| 62 |    |   | Measurements                          | Analyze microwave impedance         | R6 |
|    |    |   |                                       | measurement                         |    |

# IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course               |         |         |     |         | Pr      | ogram   | Outco   | omes    |     |          |      |          | Prog | ram Sj   | pecific |
|----------------------|---------|---------|-----|---------|---------|---------|---------|---------|-----|----------|------|----------|------|----------|---------|
| Outcomes             |         |         |     |         |         |         |         |         |     |          |      | Outcomes |      |          |         |
|                      | PO<br>1 | PO<br>2 | PO3 | PO<br>4 | РО<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO9 | PO1<br>0 | PO11 | PO1<br>2 | PSO1 | PSO<br>2 | PSO3    |
| C01                  | 2       | 3       | 2   | 2       | 2       | 2       | 2       | -       | 1   | 2        | 2    | 2        | 2    | 2        | 1       |
| CO2                  | 2       | 2       | 2   | 2       | 2       | 1       | 2       | -       | 2   | 3        | 3    | 2        | 3    | 1        | 1       |
| CO3                  | 3       | 3       | 3   | 3       | 3       | 2       | 3       | -       | 1   | 3        | 2    | 3        | 2    | 2        | 1       |
| CO4                  | 2       | 3       | 2   | 2       | 2       | 2       | 2       | -       | 1   | 2        | 2    | 3        | 2    | 2        | 1       |
| CO5                  | 3       | 2       | 3   | 3       | 3       | 1       | 3       | -       | 2   | 2        | 3    | 2        | 3    | 1        | 1       |
| CO6                  | 3       | 2       | 3   | 3       | 3       | 1       | 3       | -       | 2   | 3        | 3    | 3        | 3    | 3        | 1       |
| Average              | 2.5     | 2.5     | 2.5 | 2.5     | 2.5     | 1.5     | 2.5     | -       | 1.5 | 2.5      | 2.5  | 2.5      | 2.5  | 1.83     | 1       |
| Average<br>(Rounded) | 3       | 3       | 3   | 3       | 3       | 2       | 3       | -       | 2   | 3        | 3    | 3        | 3    | 2        | 1       |



1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) - None

| Mapping  | Low (1),<br>Medium (2),<br>High(3) | Justification                                                                                |
|----------|------------------------------------|----------------------------------------------------------------------------------------------|
| CO1-PO1  | 2                                  | Students will be able to understand the Microwaves.                                          |
| CO1-PO2  | 3                                  | Analyze the Rectangular Waveguides.                                                          |
| CO1-PO3  | 2                                  | Students will be able to know the TE and TM modes.                                           |
| CO1-PO4  | 2                                  | Derive various field configurations in rectangular waveguides.                               |
| CO1-PO5  | 2                                  | Analyze mathematical derivations for various field configurations in rectangular waveguides. |
| CO1-PO6  | 2                                  | Derive various field configurations in circular waveguides.                                  |
| CO1-PO7  | 2                                  | Analyze mathematical derivations for various field configurations in circular waveguides     |
| CO1-PO9  | 1                                  | Identify various types of Modes .                                                            |
| CO1-PO10 | 2                                  | Study various modes of operation.                                                            |
| CO1-PO11 | 2                                  | Derive expressions for various parameters of waveguides.                                     |
| CO1-PO12 | 2                                  | Solve problems on various parameters of waveguides.                                          |
| CO1-PSO1 | 2                                  | Perform experiments to understand various parameters of waveguides.                          |
| CO1-PSO2 | 2                                  | Students will be able to perform miniprojects using waveguides.                              |
| CO1-PSO3 | 1                                  | Understand wavelengths and impedance relations.                                              |
| CO2-PO1  | 2                                  | Solve problems on wavelengths and impedance relations.                                       |
| CO2-PO2  | 2                                  | Study power transmission in waveguides.                                                      |
| CO2-PO3  | 2                                  | Illustrate power transmission in waveguides.                                                 |
| CO2-PO4  | 2                                  | Study power losses in waveguides.                                                            |
| CO2-PO5  | 2                                  | Illustrate power losses in waveguides.                                                       |
| CO2-PO6  | 1                                  | Solve problems on power losses.                                                              |
| CO2-PO7  | 2                                  | Summarize power transmission and power losses in wave guides                                 |
| CO2-PO9  | 2                                  | Understand the concept of microstrip lines.                                                  |
| CO2-PO10 | 3                                  | Study the characteristics of microstrip lines.                                               |

# X. JUSTIFICATIONS FOR CO-PO MAPPING:



| CO2-PO11 | 3 | Design using microstrip lines.                            |  |
|----------|---|-----------------------------------------------------------|--|
| CO2-PO12 | 2 | Compare various parameters of microstrip lines,           |  |
| CO2-PSO1 | 3 | Study the characteristics of dielectric materials.        |  |
| CO2-PSO2 | 1 | Explain effective dielectric constant                     |  |
| CO2-PSO3 | 1 | Able to define Q factor.                                  |  |
| CO3-PO1  | 3 | Analyse the impact of various effeccts on Q-factor.       |  |
| CO3-PO2  | 3 | now various classifications of various cavities.          |  |
| CO3-PO3  | 3 | Know various classifications of various cavities.         |  |
| CO3-PO4  | 3 | Analyze mode characteristics.                             |  |
| CO3-PO5  | 3 | Distinguish mode characteristics.                         |  |
| CO3-PO6  | 2 | Able to solve problems on mode characteristics.           |  |
| CO3-PO7  | 3 | Describe the characteristic features of resonant windows. |  |
| CO3-PO9  | 1 | Know the applications of H-plane Tee.                     |  |
| CO3-PO10 | 3 | Know the applications of E-plane Tee.                     |  |
| CO3-PO11 | 2 | Know the applications of Hybrid Tee junction.             |  |
| CO3-PO12 | 3 | Know the applications of ratrace.                         |  |
| CO3-PSO1 | 2 | Derive the s-parameters of H-plane tee.                   |  |
| CO3-PSO2 | 2 | Derive the s-parameters of E-plane tee.                   |  |
| CO3-PSO3 | 1 | Derive the s-parameters of magic tee.                     |  |
| CO4-PO1  | 2 | Derive the s-parameters of rat race.                      |  |
| CO4-PO2  | 3 | Know the applications of resonant Iris.                   |  |
| CO4-PO3  | 2 | Understand the details of directional couplers.           |  |
| CO4-PO4  | 2 | Know various types of directional couplers.               |  |
| CO4-PO5  | 2 | Study the working of a wave guide attenuator.             |  |
| CO4-PO6  | 2 | Able to list out various types of coupling.               |  |
| CO4-PO7  | 2 | Illustrate waveguide discontinuities                      |  |
| CO4-PO9  | 1 | Understand the basic principle of attenuators.            |  |
| CO4-PO10 | 2 | Analyse the operation and parameters of attenuators.      |  |
| CO4-PO11 | 2 | Explain the applications of attenuators.                  |  |
| CO4-PO12 | 3 | Analyse the properties of S-matrix.                       |  |
| CO4-PSO1 | 2 | Explain about Phase shifters.                             |  |



| CO4-PSO2 | 2 | Compare different types of T Junctions .                                       |  |  |
|----------|---|--------------------------------------------------------------------------------|--|--|
| CO4-PSO3 | 1 | Explain Directional Coupler, Magic Tee, Hybrid Ring                            |  |  |
| CO5-PO1  | 3 | Classify Ferrites and their Characteristics                                    |  |  |
| CO5-PO2  | 2 | Distinguish Ferrite Components-Gyrator, Isolator                               |  |  |
| CO5-PO3  | 3 | Define Circulator .                                                            |  |  |
| CO5-PO4  | 3 | Compare various parameters of Microstrip Lines                                 |  |  |
| CO5-PO5  | 3 | Formulate T Junction S Matrix derivation                                       |  |  |
| CO5-PO6  | 1 | Solve problems based on Ferrites                                               |  |  |
| CO5-PO7  | 2 | Illustrate about Conventional Tubes                                            |  |  |
| CO5-PO9  | 2 | Compare Microwave tubes – O type and M type classifications                    |  |  |
| CO5-PO10 | 2 | Categorize O-type tubes : 2 Cavity Klystrons                                   |  |  |
| CO5-PO11 | 3 | Apply Velocity Modulation Process                                              |  |  |
| CO5-PO12 | 2 | Analyze Bunching Process and its mathematical treatment                        |  |  |
| CO5-PSO1 | 3 | Examine Reflex Klystron Operation                                              |  |  |
| CO5-PSO2 | 1 | Formulate derivation of Klystron Parameters                                    |  |  |
| CO5-PSO3 | 1 | Classify different oscillating modes                                           |  |  |
| CO6-PO1  | 3 | List out various types of Slow Wave Tubes                                      |  |  |
| CO6-PO2  | 2 | Apply Structure of TWT and Amplification Process                               |  |  |
| CO6-PO3  | 3 | Interpret Suppression of Oscillations, Learn about Gain<br>Considerations      |  |  |
| CO6-PO4  | 3 | Compare M-Type Tubes                                                           |  |  |
| CO6-PO5  | 3 | Analyze 8-Cavity Cylindrical Travelling Wave Magnetron and its characteristics |  |  |
| CO6-PO6  | 1 | Identify different modes in M Tubes and Solve Related Problems                 |  |  |
| CO6-PO7  | 3 | Compare Transferred Electronic Devices                                         |  |  |
| CO6-PO9  | 2 | Examine basic modes of Operation, Oscillation Modes                            |  |  |
| CO6-PO10 | 3 | Classify Avalanche Transit Time Devices                                        |  |  |
| CO6-PO11 | 3 | Summarize the applications of transit time devices.                            |  |  |
| CO6-PO12 | 3 | Compare various types of microwave measurement techniques.                     |  |  |
| CO6-PSO1 | 3 | Illustrate various types of Microwave Measurement Techniques                   |  |  |
| CO6-PSO2 | 3 | Perform experiments to measure Q value.                                        |  |  |
| CO6-PSO3 | 1 | Analyze microwave impedance measurement                                        |  |  |



# XI. QUESTION BANK (JNTUH) :

# UNIT - I

# Long Answer Questions:

| S.No. | Question                                                              | Blooms     | Course  |
|-------|-----------------------------------------------------------------------|------------|---------|
|       |                                                                       | Taxonomy   | Outcome |
|       |                                                                       | Level      |         |
| 1.    | <b>Derive</b> the TMmn mode field equation in rectangular             | Remember   | 1       |
|       | waveguide.                                                            |            |         |
|       | What are the dominated and degenerate modes? What is                  | Remember   | 1       |
| 2.    | the significance of dominant modes? <b>Indicate</b> the dominant      |            |         |
|       | mode in rectangular wave guide and calculate for the                  |            |         |
|       | same.                                                                 | Arealis    | 1       |
|       | A rectangular waveguide has dimensions 2.5 X 5 cms.                   | Арріу      | L       |
| 3.    | <b>Determine</b> the guide wavelength, phase constant and             |            |         |
|       | mode                                                                  |            |         |
|       | What is a Microwave spectrum bands? <b>Explain</b> briefly the        | Remember   | 1       |
| 4.    | applications of microwayes at various frequency                       | nemeniber  | -       |
|       | bands.                                                                |            |         |
| F     | Explain the TE and TM modes of propagation in waveguides.             | Understand | 1       |
| 5.    | Why TEM wave does not exist in a rectangular wave guide.              |            |         |
|       | Explain the wave impedance of a rectangular waveguide and             | Understand | 1       |
| 6.    | derive the expression for the wave impedance of TE and TM             |            |         |
|       | modes.                                                                |            |         |
|       | A rectangular wave guide with dimension of 3x 2 cm                    | Analyze    | 1       |
| 7.    | operates in the TM11 mode at 10 GHz. Determine the                    |            |         |
|       | characteristic wave impedance.                                        |            |         |
|       | A Rectangular wave guide is filled by dielectric material of          | Understand | 1       |
|       | $\epsilon r = 9$ and has dimensions of 7 × 3.5 cm. It operates in the |            |         |
| 8.    | dominant IE mode. (1) <b>Determine</b> the cut off frequency. (1)     |            |         |
|       | Find the phase velocity in the guide at a frequency of 2 GH2.         |            |         |
|       | (III) Find the guided wave religinat 2002.                            | Pomombor   | 1       |
| 9.    | rectangular wave guide                                                | Keinember  | T       |
|       |                                                                       |            |         |
| 10    | Derive an expression for microwave impedance for TE waves             | Understand | 1       |
| 10.   | in rectangular wave guide.                                            |            |         |
| 11.   | Derive an expression for microwave impedance for TM                   | Understand | 1       |
|       | waves in rectangular wave guide.                                      |            |         |
| 12.   | <b>Derive</b> the expression for power transmission in waveguide.     | Remember   | 1       |



# Short Answer Questions:

| S.No. | Question                                                          | Blooms     | Course   |
|-------|-------------------------------------------------------------------|------------|----------|
|       |                                                                   | Taxonomy   | Outcome  |
|       |                                                                   | Level      |          |
|       |                                                                   |            |          |
|       | <b>List</b> the typical applications of microwaves.               | Remember   | 1        |
| 1.    |                                                                   |            |          |
|       | <b>Define</b> the dominant mode of a waveguide?                   | Understand | 1        |
| 2.    |                                                                   | onderstand | -        |
|       | What are microwayas? Why they are so called?                      | Understand | 1        |
| 3.    | what are microwaves? why they are so called?                      | Understand | 1        |
|       |                                                                   |            |          |
| 4.    | Define waveguide? Mention some of its features?                   | Remember   | 1        |
|       |                                                                   |            |          |
| 5     | What are TE, TM & TEM modes?                                      | Understand | 1        |
| Э.    |                                                                   |            |          |
| C     | <b>Define</b> dominant mode and degenerate mode.                  | Remember   | 1        |
| 6.    |                                                                   |            |          |
|       | <b>Define</b> cutoff frequency of a wayeguide                     | Evaluate   | 1        |
| 7.    |                                                                   | Evaluate   | -        |
|       | What is dominant mode of a restangular way aguide for TC          | Domombor   | 1        |
| 8     | what is dominant mode of a rectangular waveguide for TE           | Remember   | L        |
| 0.    | and TM modes and why?                                             |            |          |
|       | <b>Find</b> the cut-off frequency of the dominant mode for an air | Understand | 1        |
|       | filled as star substances wide when a Cost and h 2 are for        | Understand | 1        |
| 9.    | filled rectangular waveguide when a = 6cm and b = 2 cm for        |            |          |
|       | TE wave?                                                          |            |          |
|       |                                                                   |            |          |
| 10.   | Name the microwave frequency bands and spectra.                   | Understand | 1        |
|       |                                                                   |            |          |
| 11    | Define phase velocity.                                            | Understand | 1        |
|       |                                                                   |            |          |
| 10    | What is meant by group velocity?                                  | Understand | 1        |
| 12.   |                                                                   |            |          |
|       | What is the relation between phase and group velocities in        | Understand | 1        |
| 13.   | torms of light value it 2                                         | Onderstand | -        |
|       | terms of light velocity?                                          |            |          |
|       | <b>Define</b> guide wavelength.                                   | Evaluate   | 1        |
| 14.   |                                                                   |            | _        |
|       | Summarize the advantages of microwaves                            | Understand | 1        |
| 15.   | Summanze the advantages of microwaves.                            | Understand | 1        |
|       |                                                                   | Fuelvete   | 1        |
| 16    | what are the advantages of dominant mode propagation?             | Evaluate   | L        |
| 10.   |                                                                   |            |          |
|       | What are the advantages and disadvantages of micro strip          | Apolyzo    | 2        |
| 17    | winat are the advantages and disadvantages of microstrip          | Analyze    | <u>∠</u> |
| ±/.   | lines?                                                            |            |          |
|       | <b>Explain</b> briefly about impossibility of TEM Modes           | Understand | 1        |
| 18.   | Explain Sherry about hipossibility of reliving des.               |            |          |
|       |                                                                   | 1          | 1        |

# UNIT - II



# Long Answer Questions:

| S.No. | Question                                                             | Blooms     | Course  |
|-------|----------------------------------------------------------------------|------------|---------|
|       |                                                                      | Taxonomy   | Outcome |
|       |                                                                      | Level      |         |
| 1     | Derive the cut-off frequency expression for Rectangular              | Evaluate   | 2       |
| 1.    | cavity resonator.                                                    |            |         |
| 2.    | <b>Prove</b> that a cavity resonator is nothing but an LC circuit.   | Analyze    | 2       |
| 2     | <b>Explain</b> E-H plane Tee junction. Why a hybrid E-H plane Tee    | Understand | 2       |
| 5.    | referred to as Magic Tee.                                            |            |         |
| 4.    | Explain the applications of Directional Couplers.                    | Understand | 2       |
| 5.    | What is the application of Circulator?                               | Remember   | 2       |
| 6.    | <b>Explain</b> about quality factor of a cavity resonator.           | Understand | 2       |
| 7     | Explain the principle of working an H-plane Tee junction             | Understand | 2       |
| 7.    | with neat schematics.                                                |            |         |
| 8     | <b>Explain</b> the principle of working an E-plane Tee junction with | Analyze    | 2       |
| 0.    | neat schematics?                                                     |            |         |
| q     | <b>Explain</b> the principle of working a Magic Tee junction with    | Evaluate   | 2       |
| 5.    | neat schematics?                                                     |            |         |
| 10    | <b>Explain</b> the principle of working of two-hole Directional      | Understand | 3       |
| 10.   | coupler with neat schematics?                                        |            |         |
| 11    | <b>Explain</b> Bethe hole Directional coupler and write applications | Evaluate   | 3       |
| 11.   | of directional couplers?                                             |            |         |
| 12    | Explain the following characteristics related to Directional         | Remember   | 3       |
| 12.   | coupler i)Coupling factor ii)Directivity iii) Isolation.             |            |         |

# Short Answer Questions:

| S.No. | Question                                                  | Blooms     | Course  |
|-------|-----------------------------------------------------------|------------|---------|
|       |                                                           | Taxonomy   | Outcome |
|       |                                                           | Level      |         |
| 1.    | Define the attenuation constant.                          | Remember   | 2       |
| 2.    | What is meant by cavity resonator?                        | Understand | 2       |
| 3.    | <b>Define</b> resonant frequency and give its expression. | Understand | 2       |
| 4.    | <b>Derive</b> the resonant frequency for TE101 mode.      | Understand | 2       |
| 5.    | What are the applications of cavity resonator?            | Evaluate   | 2       |
| 6.    | Define quality factor of a cavity resonator               | Evaluate   | 2       |
| 7.    | Explain the waveguide discontinuities?                    | Remember   | 2       |
| 8.    | Describe the characteristic features of resonant windows? | Understand | 2       |



| 9.  | Mention the applications of Hybrid Tee junction?           | Remember   | 2 |
|-----|------------------------------------------------------------|------------|---|
| 10. | Mention the applications of resonant Iris?                 | Understand | 2 |
| 11. | Mention the applications of capacitive and inductive Iris. | Evaluate   | 2 |
| 12. | What is directional coupler?                               | Understand | 3 |
| 13. | <b>Describe</b> the principle of working of a wave guide   | Understand | 2 |
| 10. | attenuator, with neat schematics?                          |            |   |
| 14. | List out the different types of waveguide Irises.          | Understand | 2 |
| 15. | <b>Give</b> the properties of S-matrix.                    | Evaluate   | 2 |
| 16. | What is an isolator?                                       | Analyze    | 2 |
| 17. | What is a Gyrator?                                         | Analyze    | 2 |

# UNIT - III Long Answer Questions:

| S.No. | Question                                                                                                                                                                                                                                                           | Blooms     | Course  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|
|       |                                                                                                                                                                                                                                                                    | Taxonomy   | Outcome |
|       |                                                                                                                                                                                                                                                                    | Level      |         |
| 1.    | What is Gunn effect? Explain the operation of Gunn diode.                                                                                                                                                                                                          | Remember   | 4       |
| 2.    | <b>Explain</b> is the principle of working for Two – Cavity Klystron with velocity diagram.                                                                                                                                                                        | Understand | 4       |
| 3.    | <b>Derive</b> the expression for output power and efficiency of a 2 cavity klystron.                                                                                                                                                                               | Understand | 4       |
| 4.    | <b>Explain</b> in detail bunching process & obtain expression for bunching parameter in a two cavity klystron amplifier.                                                                                                                                           | Understand | 4       |
| 5.    | <b>What</b> are the limitations of conventional tubes at microwave frequencies? Explain how these limitations can be overcome.                                                                                                                                     | Understand | 4       |
| 6.    | A reflex klystron having an accelerated field of 300v oscillates at a frequency of 10GHZ with a retarding field of 500v. If its cavity is returned to 9GHZ. <b>Wha</b> t must be the new value of retarding field for oscillations in the same mode to take place? | Analysis   | 4       |
| 7.    | Name different methods of generating microwave power.<br>Describe the necessary theory and working of reflex klystron.                                                                                                                                             | Understand | 4       |
| 8.    | <b>Explain</b> in detail bunching process and <b>obtain</b> expression for bunching parameter in a two cavity klystron amplifier.                                                                                                                                  | Understand | 4       |
| 9.    | <b>Explain</b> the principle of operation of a reflex Klystron oscillator and <b>derive</b> an expression for the bunching parameter.                                                                                                                              | Understand | 4       |
| 10.   | <b>Explain</b> the construction and working of two cavity klystron amplifier.                                                                                                                                                                                      | Remember   | 4       |



# Short Answer Questions:

| S.No. | Question                                                               | Blooms     | Course  |
|-------|------------------------------------------------------------------------|------------|---------|
|       |                                                                        | Taxonomy   | Outcome |
|       |                                                                        | Level      |         |
| 1.    | <b>State</b> the limitations of conventional tubes at microwave        | Remember   | 4       |
|       | frequencies.                                                           |            | -       |
| 2.    | What is the principle of two cavity Klystron amplifier?                | Remember   | 4       |
| 3.    | What are the applications of reflex klystron?                          | Understand | 4       |
| 4.    | <b>State</b> the characteristics of the two-cavity klystron amplifier. | Remember   | 4       |
| 5.    | Compare TWT and Klystron amplifier.                                    | Analyze    | 4       |
| 6.    | <b>Draw</b> the schematic diagram of helix travelling wave tube?       | Understand | 4       |
| 7.    | What is meant by reflex klystron?                                      | Remember   | 4       |
| 8.    | What are the performance characteristics of klystron amplifier?        | Remember   | 4       |
| 9.    | Differentiate between klystrons and TWT.                               | Analyze    | 4       |
| 10.   | <b>State</b> the applications of the two-cavity klystron amplifier.    | Remember   | 4       |
| 11.   | Why multi-cavity klystrons are preferred?                              | Remember   | 4       |
| 12.   | How are oscillations avoided in travelling wave tube?                  | Remember   | 4       |
| 13    | <b>Discuss</b> in detail about lead inductance and inter electrode     | Understand | 4       |
| 15.   | frequencies                                                            |            |         |
|       | <b>Differentiate</b> between $O-type$ tubes and $M-type$ tubes         | Analysis   | 4       |
| 14.   |                                                                        | Analysis   |         |
| 15.   | reflex klystron?                                                       | Арріу      | 4       |
| 16.   | What is transit time?                                                  | Analyze    | 4       |
| 17.   | What is the operating principle of reflex klystron?                    | Remember   | 4       |
| 18.   | What is velocity and current modulation in a reflex klystron?          | Remember   | 4       |
| 19.   | How does bunching occur in a reflex klystron?                          | Remember   | 4       |
| 20.   | <b>Explain</b> clearly the classification of microwave sources.        | Understand | 4       |
| 21.   | What is the operating frequency, power output and                      | Remember   | 4       |
|       | efficiency of a reflex klystron?                                       |            |         |
| 22.   | <b>Wha</b> t are the devices used as a microwave signal sources?       | Remember   | 4       |
| 23.   | Write the classification of microwave tubes.                           | Apply      | 4       |
| 24.   | What is TWTA?                                                          | Remember   | 4       |
| 25.   | What is the need of slow – wave structures?                            | Remember   | 4       |



| 26. | <b>Wha</b> t are the assumptions for calculation of RF Power in Reflex Klystron?               | Remember   | 4 |
|-----|------------------------------------------------------------------------------------------------|------------|---|
| 27. | What is the effect of transit time?                                                            | Remember   | 4 |
| 28. | List the applications of TWT.                                                                  | Remember   | 4 |
| 29. | <b>What</b> do you mean by O-type tubes? Name some O-type tubes.                               | Understand | 4 |
| 30. | List the parameters on which bunching depend on.                                               | Remember   | 4 |
| 31. | <b>Compare</b> between two cavity klystron and reflex klystron?                                | Analyze    | 4 |
| 32. | <b>State</b> the advantages of TWT.                                                            | Remember   | 4 |
| 33. | <b>Stat</b> e the effects of frequency rise in conventional tubes.                             | Remember   | 4 |
| 34. | <b>Explain</b> briefly about linear beam tubes and crossed field tubes                         | Understand | 4 |
| 35. | <b>Sketch</b> the functional diagram of two-cavity amplifier.                                  | Apply      | 4 |
| 36. | <b>Compare</b> drift space bunching and reflector bunching.                                    | Analyze    | 4 |
| 37. | Compare magnetron and reflex klystron.                                                         | Analyze    | 4 |
| 38. | List the drawbacks of klystron amplifiers.                                                     | Remember   | 4 |
| 39. | What is the condition for oscillation in Reflex klystron?                                      | Understand | 4 |
| 40. | List different types of magnetrons.                                                            | Remember   | 4 |
| 41. | What are the performance characteristics of TWT?                                               | Understand | 4 |
| 42. | <b>What</b> are the desirable properties of slow wave structures to be used in TWT amplifiers? | Understand | 4 |
| 43. | <b>What</b> do you mean by M-type tubes? Name some M-type tubes.                               | Understand | 4 |
| 44. | <b>Draw</b> the schematic diagram of two cavity klystron amplifier?                            | Understand | 4 |
| 45. | What is the need of slow wave structures in TWT?                                               | Understand | 4 |
| 46. | Write the basic modes of operation in magnetron?                                               | Understand | 4 |
| 47. | What is klystron tube?                                                                         | Remember   | 4 |
| 48. | What is reflex klystron oscillator?                                                            | Remember   | 4 |

## UNIT - IV Long Answer Questions:

|       | C C                                                                |            |         |
|-------|--------------------------------------------------------------------|------------|---------|
| S.No. | Question                                                           | Blooms     | Course  |
|       |                                                                    | Taxonomy   | Outcome |
|       |                                                                    | Level      |         |
| 1.    | <b>Explain</b> the working Magnetron with $\pi$ -mode oscillation. | Understand | 4       |



| 2   | What is meant by Avalanche Transit Time Devices? Explain                 | Remember   | 4 |
|-----|--------------------------------------------------------------------------|------------|---|
| ۷.  | the operation, construction and Applications of IMPATT.                  |            |   |
| 3.  | Explain avalanche transit time devices.                                  | Understand | 4 |
| 4.  | Write short notes on "8 cavity magnetron"                                | Understand | 4 |
| 5.  | <b>Explain</b> Gunn effect using the two valley theory.                  | Analyze    | 4 |
| 6   | <b>Derive</b> the criterion for classifying the modes of operation       | Remember   | 4 |
| 0.  | for Gunn effect diodes.                                                  |            |   |
| 7.  | <b>Describe</b> the operation of IMPATT diode.                           | Remember   | 4 |
| 8.  | <b>Explain</b> the physical structure and construction of IMPATT diodes. | Analysis   | 4 |
| 9.  | Write short notes on LSA mode in GUNN diode.                             | Understand | 4 |
| 10  | <b>Derive</b> the criterion for classifying the modes of operation       | Remember   | 4 |
| 10. | for Gunn effect diodes.                                                  |            |   |
| 11. | <b>Describe</b> the operation of TRAPATT diode.                          | Remember   | 4 |
| 12. | <b>Describe</b> the operation of BARITT diode.                           | Understand | 4 |

# Short Answer Questions:

| S.No. | Question                                                    | Blooms     | Course  |
|-------|-------------------------------------------------------------|------------|---------|
|       |                                                             | Taxonomy   | Outcome |
|       |                                                             | Level      |         |
| 1.    | What is transferred electron effect?                        | Remember   | 4       |
| 2.    | What is negative resistance in Gunn diode?                  | Remember   | 4       |
| 3.    | What are the applications of Microwave Solid-State Devices? | Understand | 4       |
| 4.    | What are the elements that exhibit Gunn Effect?             | Remember   | 4       |
| 5.    | Mention the applications of Gunn diode amplifier.           | Remember   | 4       |
| 6.    | Why magnetron is called as cross field devices?             | Understand | 4       |
| 7.    | What are the types of magnetrons?                           | Remember   | 4       |
| 8.    | Write short notes on negative resistance magnetron.         | Understand | 4       |
| 9.    | <b>State</b> the power output and efficiency of magnetron.  | Understand | 4       |
| 10.   | Write the applications of magnetron.                        | Understand | 4       |
| 11.   | What is GUNN effect?                                        | Understand | 4       |
| 12.   | Explain transferred electron effect.                        | Understand | 4       |
| 13.   | What is the principle of TRAPATT diode?                     | Remember   | 4       |
| 14.   | What is the principle of IMPATT diode?                      | Remember   | 4       |

|     |                                               | UNPART REG VILLE B | SED EDUCATION |  |
|-----|-----------------------------------------------|--------------------|---------------|--|
| 15. | <b>What</b> is the principle of BARITT diode? | Remember           | 4             |  |

# UNIT - V Long Answer Questions:

| S.No. | Question                                                      | Blooms     | Course  |
|-------|---------------------------------------------------------------|------------|---------|
|       |                                                               | Taxonomy   | Outcome |
|       |                                                               | Level      |         |
| 1     | Explain the measurement of attenuation using power ratio      | Understand | 6       |
| 1.    | method with neat block diagram?                               |            |         |
| 2.    | <b>Explain</b> Slotted line method for impedance measurement. | Understand | 5       |
| 2     | Draw a neat diagram of microwave test bench and explain       | Understand | 5       |
| 5.    | about each block along with its features.                     |            |         |
| Л     | Explain the measurement of microwave power using              | Remember   | 6       |
| 4.    | bolometer method.                                             |            |         |
| 5.    | Explain the measurement of phase shift.                       | Remember   | 6       |
| 6.    | <b>Explain</b> the method of measurement of high VSWR.        | Understand | 6       |
| 7     | Explain the RF substitution method of measurement of          | Understand | 6       |
| 7.    | attenuation.                                                  |            |         |
| 8.    | <b>Explain</b> the measurement of Q of a cavity resonator.    | Understand | 6       |
| 9.    | <b>Explain</b> the frequency measurement techniques.          | Understand | 6       |
| 10    | What are the different techniques employed in measuring       | Remember   | 6       |
| 10.   | impedance? Explain any one method.                            |            |         |
| 11    | Explain the measurement of frequency using wave meter         | Understand | 6       |
| 11.   | method.                                                       |            |         |
| 12    | Explain the high power measurements using calorimetric        | Understand | 6       |
| 12.   | method.                                                       |            |         |

# Short Answer Questions:

| S.No. | Question                                                | Blooms     | Course  |
|-------|---------------------------------------------------------|------------|---------|
|       |                                                         | Taxonomy   | Outcome |
|       |                                                         | Level      |         |
| 1.    | <b>Define</b> the method for measuring VSWR < 10?       | Remember   | 6       |
| 2     | What is the principle of microwave frequency            | Remember   | 6       |
| ۷.    | measurement?                                            |            |         |
| 3.    | <b>State</b> various methods for measuring attenuation? | Understand | 6       |
| 4.    | Write the S-matrix for Isolator and Gyrator?            | Analyze    | 5       |
| 5.    | Write the S-matrix for E-Plane and H-Plane tee.         | Analyze    | 5       |
| 6.    | Write the s-matrix for directional coupler.             | Understand | 5       |



| 7.  | <b>Define</b> : i) Voltage standing wave ratio ii) Reflection coefficient. | Remember   | 5 |
|-----|----------------------------------------------------------------------------|------------|---|
| 8.  | <b>List</b> the methods used for measuring the low and high VSWR?          | Remember   | 6 |
| 9.  | Write a short notes on power ratio method.                                 | Understand | 6 |
| 10. | Write short notes on RF substitution method.                               | Understand | 6 |
| 11. | Write short notes on measurement of phase shift.                           | Understand | 6 |
| 12. | List the devices used in microwave bench setup.                            | Remember   | 6 |

# **OBJECTIVE QUESTIONS:**

# UNIT-I

|     | 1.        | Klystron operation is based on the principle of                                                                 |                                                         |  |  |
|-----|-----------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|
|     |           | (a)velocity modulation (b)                                                                                      | o)amplitude modulation                                  |  |  |
|     |           | (c)frequency modulation (d                                                                                      | ) Phase modulation                                      |  |  |
|     |           | Answer: (a) Velocity modulation                                                                                 |                                                         |  |  |
|     | 2.        | The following is not an application of v                                                                        | aractor diode                                           |  |  |
|     |           | (a) Parametric amplifier (b                                                                                     | ) Frequency tuner                                       |  |  |
|     |           | (c) Voltage controlled oscillator (d                                                                            | ) Phase shifter                                         |  |  |
|     |           | Answer: (a) Parametric amplifier                                                                                |                                                         |  |  |
|     | 3.        | 3. Slotted line with tunable probe is not used to measure                                                       |                                                         |  |  |
| (a) | VS        | SWR (b) wavelength (c) power (d) imp                                                                            | bedance                                                 |  |  |
| . , |           | Answer: (b) wavelength                                                                                          |                                                         |  |  |
|     | 4.        | In a microwave magic-T, E plane and H<br>(a) in phase (b) out of phase (c) isolated<br>Answer: (b) out of phase | I plane are<br>d (d) None                               |  |  |
|     | 5.        | Baretters and bolometers are used for m                                                                         | neasurement of                                          |  |  |
|     |           | (a) VSWR (b) transmission losses                                                                                | (c) microwave power (d) frequency                       |  |  |
|     |           | Answer: (c) microwave power                                                                                     |                                                         |  |  |
|     | 6.<br>(a) | Which of the following antennas exhibit<br>) small circular loop (b) folded dipole (c<br>Answer: (c) helical    | s circular polarization<br>) helical (d) parabolic dish |  |  |
|     |           |                                                                                                                 |                                                         |  |  |

7. Which of the following antenna is used as standard reference for calculating directive gain \_\_\_\_\_.



(a) half wave dipole(c) elementary doubletAnswer: (d) isotropic antenna

- (b) infinitesimal dipole(d) isotropic antenna
- 8. Which of the following microwave diodes is suitable for very low power oscillations applications only \_\_\_\_\_.
  (a) tunnel (b) impatt (c) varactor (d) gunn Answer: (a) tunnel
- 9. Which of the following antenna is obtained by modifying a waveguide \_\_\_\_\_.
- (a) miscosrtip antenna (b) helical antenna (c) horn antenna (d) dipole antenna Answer: (c) horn antenna

10. Which of the following is a microwave power amplifier \_\_\_\_\_.

(a) gunn diode (b) reflex klystron (c) magnetron (d) travelling wave tube Answer: (c) magnetron

## **UNIT-II**

- 1) Which device can detect the presence of both forward and backward waves in a wave guide \_\_\_\_\_.
- (a) filter (b) detector (c) directional coupler (d) magic T Answer: (c) directional coupler
  - Which principle of operation of cavity wave meters is used in microwave networks (a)phase shift (b) resonance (c) polarization shift (d) gyration Answer: (b) resonance
  - In a magnetron oscillator the improvement of stability and efficiency is achieved by \_\_\_\_\_\_ technique.(a) strapping (b)cross coupling (c) bunching (d) bouncing Answer: (b) cross coupling
  - 4) Which one of the following is used for amplification of microwave signals
     (a) gunn diode
     (b) strapped magnetron
     (c) reflex klystron
     (d) double cavity klystron
     Answer:
     (c) reflex klystron
  - 5) In microwave communication links, what causes intense fading in the 18GHz band?
    (a) snow (b) rain (c) fog (d) dust Answer: (b) rain
  - 6) Which of the following is a microwave source with a 'cross field' structure(a) double cavity klystron (b) reflex klystron (c) magnetron (d) travelling wave tubeAnswer: (d) travelling wave tube
  - 7) Which the following has the 'negative resistance' characteristics 9a) reflex klystron (b) gunn diode (c) PNP transistor (d) magnetron



Answer: (b) gunn diode

- 8) Which of the following devices is 'hot electron' diode
  (a) thermionic tube diode
  (b) schottky barrier diode
  (c) Thomson deflection diode
  (d) thermal electron diode
  Answer: (b) schottky barrier diode
- 9) In wave guide networks, there is a component which consists of an E-plane Tee combined with an H-plane Tee? What this component generally known as?(a) directional Tee (b) phased array Tee (c) coupler Tee (d) magic Tee Answer: (d) magic Tee

## UNIT-III

- A rectangular waveguide of internal dimensions (a = 4 cm and b = 3 cm) is to be operated in TE11 mode. The minimum operating frequency is

   (a) 6.25 GHz
   (b) 6 GHz
   (c) 5 GHz
   (d) 3.75 GHz.

   Answer: 6.25 GHz
- 2. At 20 GHz, the gain of a parabolic dish antenna of 1 meter and 70% efficiency is (a)15 dB (b) 25 dB (c)35 dB (d) 45 dB
  Answer: (d) 45 dB
- 3. An air-filled rectangular waveguide has inner dimensions of 3 cm # 2 cm. The wave Impedance of the *TE*20 mode of propagation in the waveguide at a frequency of 30 GHz is (free space impedance η = 377 Ω).
  (a) 308 Ω
  (b) 355 Ω
  © 400 Ω
  (d) 461 Ω
  Answer: (c) 400 Ω
- 4. In a microwave test bench, why is the microwave signal amplitude modulated at 1kHz
  (a) To increase the sensitivity of measurement
  (b) To transmit the signal to a far-off place
  (c) To study amplitude modulations
  (d) Because crystal detector fails at microwave frequencies Answer: (d)

5. To couple a coaxial line to a parallel wire line, it is best to use a \_\_\_. (a)slotted line (b) balun (c)directional coupler (d)  $\lambda/4$  transformer. Answer: (b) balun

#### **UNIT-IV**

1. The kinetic energy of the beam remains unchanged in the interaction between an electron beam and an RF wave in a \_\_\_\_\_.



(a)multi-cavity klystron(c) travelling wave tubeAnswer: (c) travelling wave tube

(b) cross-field amplifier(d) gyratron

- Which one of the following is a transferred electron device?
   (a)BARITT diode (b) IMPATT diode (c) GUNN diode (d)Step recovery diode Answer: (c) GUNN diode
- 3. A waveguide section in a microwave circuit will act as \_\_\_\_\_\_filter.
  (a)Low pass (b)Band pass (c) High pass (d)All pass Answer: (c) High pass
- 4. In a klystron amplifier, the input cavity is called \_\_\_\_\_.
  (a)buncher (b) catcher (c) pierce gun (d)collector Answer: (a)buncher

## UNIT-V

- HEMT is used in the microwave circuit is a \_\_\_\_\_.
   (a) Source (b)high power amplifier (c) low noise amplifier (d) detector Answer: (c) low noise amplifier
- A cavity resonator can be represented by \_\_\_\_\_ circuit.
  (a) LC (b) LCR (c) lossy inductor (d) lossy capacitor Answer: (a) LC
- 3. The noise produced in a microwaver tube due to random nature of emission and electron flow is called \_\_\_\_\_\_\_ noise.
  (a) Partition (b) Shot (c) Johnson (d) Shannon Answer: (b) Shot
- 4. Why is an attenuator is used in a TWT?
  (a) To help bouncing
  (b) To prevent oscillations
  (c) To prevent saturation
  (d) To increase gain
  Answer: (b) To prevent oscillations
- 5. Which is the dominant mode in rectangular waveguides?
  (a) TE10 (b) TE11 (c) TM01 (d) TM11. Answer: (b) (a) TE10

## **XII. GATE QUESTIONS:**

- 1. A reflex Klystron functions as \_\_\_\_\_
- a) Microwave oscillator
- c) Both as Microwave amplifier and oscillator

b) Microwave amplifier d) A high gain cavity



Answer: a) Microwave oscillator

2. The modes in a reflex Klystron a) give the same frequency but different transit times b) result from excessive transit time across the resonator gap c) are caused by spurious frequency modulation d) are just for theoretical considerations Answer: a) give the same frequency but different transit times 3. Klystron operates on the principle of \_\_\_\_\_ modulation. a) Amplitude b) Frequency c) Pulse d) Velocity Answer: d) Velocity 4. In Microwave we take the elements as \_\_\_\_\_. a) Lumped circuit elements b) Distributed circuit elements c) Both a) and b) d) None Answer: b) Distributed circuit elements 5. Short term fading in microwave communication links can be overcome by \_\_\_\_\_. a) Increasing the transmitted power b) Changing the antenna c) Changing the modulation scheme d) Diversity reception and transmission Answer: d) Diversity reception and transmission 6. For handling large microwave power, the best medium is \_ b) Rectangular waveguide c) Stripline d) Circular waveguide a) Coaxial line Answer: b) Rectangular waveguide 7. A Microwave tube amplifier uses an axial magnetic field and radial electric field. This is the a) Reflex Klystron b) Coaxial Magnetron c) Travelling wave magnetron d) CFA-Crossed Field Amplifier Answer: d) CFA-Crossed Field Amplifier 8. A disadvantage of microstrips with respect to stripline circuit is that the former: \_\_\_\_\_. a) Do not let themselves to be printed-circuits b) Are more likely to radiate c) Are bulkier d) Are more expensive and complex to manufacture Answer: d) Are more expensive and complex to manufacture 9. Most of the power measuring microwave devices measure \_\_\_\_ a) Average power b) Peak power c) Instantaneous power d) None of these Answer: a) Average power 10. HEMT used in microwave circuit is a \_\_\_\_\_ b) High power amplifier a) Source c) Detector d) Low noise Amplifier



Answer: d) Low noise Amplifier

11. Ionospheric preparation is not possible for microwaves because \_\_\_\_\_ a) Microwaves will be fully absorbed by the ionospheric layers b) There will be an abrupt scattering in all directions c) Microwave will penetrate through the ionospheric layers d) There will be dispersion of microwave energy Answer: c) Microwave will penetrate through the ionospheric layers 12. A waveguide section in a microwave circuit will act as a \_\_\_\_\_ a) Low-pass filter b) Band-pass filter c) High-pass filter d) Band-reject filter Answer: c) High-pass filter 13. The biggest advantage of the TRAPATT diode over the IMPATT diode is its b) Higher efficiency a) Low noise c) Ability to operate at higher frequencies d) Lesser sensitivity to harmonics Answer: b) Higher efficiency 14. A varactor diode may not be useful at microwave frequencies b) for frequency multiplication a) For electronic tuning d) As a parametric amplifier c) as an oscillator Answer: c) as an oscillator 15. The negative resistance in a tunnel diode a) is maximum at the peak point of the characteristic b) is available between the peak and valley points c) is maximum at valley point d) may be improved by the use of reverse bias Answer: b) is available between the peak and valley points 16. Which one of the following is a transferred electron device? b) IMPATT diode a) BARITT diode c) Gunn diode d) Step recovery diode Answer: c) Gunn diode 17. A PIN diode is suitable for use as a \_\_\_\_\_ a) Microwave switch b) Microwave mixed diode c) Microwave detector d) None Answer: a) Microwave switch 18. The semiconductor diode which can be used in switching circuits at microwave range is: a) PIN diode b) Tunnel diode c) Varactor diode d) Gunn diode Answer: a) PIN diode 19. Microwave antenna aperture efficiency depends on \_\_\_\_\_ b) Antenna Aperture c) Surface losses a) Feed Pattern d) Low side lobe level



Answer: b) Antenna Aperture

20. The noise produced in a microwave tube due to random nature of emission and electron flow is called \_\_\_\_\_\_.

a) Partition noise b) Shot noise c) Johnson noise d) Shannon noise Answer: b) Shot noise

## **XIII. WEBSITES:**

- 1. <u>http://www.microwaves101.com/</u>
- 2. <u>http://www.microwave-eetimes.com/</u>
- 3. http://www.surrey.ac.uk/postgraduate/rf-and-microwave-engineering
- 4. http://www.rfcafe.com/references/magazine-links.htm

## XIV. EXPERT DETAILS:

- 1. Dr. P. V. D. Somasekhar Rao (JNTUH)
- 2. Dr. T.Satya Savithri (JNTUH)
- 3. Mrs N Mangala Gouri (JNTUH)
- 4. Dr.D.Rama Krishna (O.U)
- 5. Dr.K.Chandra Bhushana Rao (JNTUK)
- 6. Dr. V. Sumalatha (JNTUA)
- 7. Dr. M.N Giriprasad (JNTUA)

## **XV. JOURNALS:**

## **INTERNATIONAL**

- 1. International Journal of Microwave Engineering
- 2. International Journal of RF and Microwave Computer-Aided Engineering
- 3. International Journal of Microwave Engineering and Technology
- 4. International Journal of Advances in Microwave Technology
- 5. LFMTP'12 Proceedings of the ACM SIGPLAN Workshop on Logical Frameworks and Meta Languages, Theory and Practice
- 6. Proceedings of the 2012 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2012

## NATIONAL

- 1. Journal of Microwave Engineering & Technologies
- 2. ICTACT Journal On Communication Technology
- 3. Advance Wireless & Mobile Communication
- 4. IETE Journal Of Research
- 5. Journal of Electrical Engineering and Electronic Technology

## XVI. LIST OF TOPICS FOR STUDENT SEMINARS:

1. Simulation surrogate-based optimization



- 2. Space mapping tuning surrogate model
- 3. High-fidelity model coarse model

# XVII. CASE STUDIES / SMALL PROJECTS:

- 1. Computer-aided design (CAD)
- 2. Microwave design simulation-driven optimization electromagnetic (EM)
- 3. Designing of Power Divider using Micro Strip.
- 4. Designing of Magic Tee.
- 5. Designing of Hybrid 3dB Coupler.