

NETWORK THEORY

Subject Code : EE304ES

Regulations : R16 - JNTUH

Class : II Year B.Tech EEE I Semester

Department of Electrical and Electronics and Engineering BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY

Ibrahimpatnam - 501 510, Hyderabad

NETWORK THEORY (EE304ES) COURSE PLANNER

COURSE OVERVIEW

This subject deals with Three -phase circuits, D.C &A.C. Transient analysis, Network functions, Network parameters-I&II, Filters, Fourier analysis of A.C. Circuits, To understand

magnetic circuits network topology and three phase circuits. To design basic filter configurations.

PRE REQUISITES:

The knowledge of following subjects is essential to understand the subject:

- 1. Concepts of e.m.f, potential difference & current, battery
- 2. Capacitors, with uniform & composite medium, energy stored in a capacitor, R-C time constant.
- 3. Fundamentals of Electrical Circuits and equipment, and Basic Engineering Mathematics.

COURSE OBJECTIVE:

1	This course introduces the basic concepts of circuit analysis which is the foundation for
	all subjects of the Electrical Engineering discipline
2	The emphasis of this course is laid on the basic analysis of circuits which includes
	three phase circuits, Transient analysis, Network functions, Network parameters,
	Filters and network topology, Fourier analysis of A.C. Circuits.

COURSE OUTCOMES:

At the end of the course the student will be in a position to

S.No	Description	Bloom's Taxonomy Level
1	Understand the concept of three phase circuits	Knowledge, Understand (Level 1, Level 2)
2	How to analyze the D.C &A.C Transient Analysis by using circuit analysis	Applying (Level 3)
3	Understand the concept of Network Parameters-I & II	Knowledge, Understand (Level 1, Level 2)
4	How to analyze the Filters Analysis by using circuit analysis	Understand, Applying (Level 2, Level 3)
5	Understand the concept of Fourier analysis of A.C. Circuits	Knowledge, Understand (Level 1, Level 2)

HOW PROGRAM OUTCOMES ARE ASSESSED

	Program Outcomes	Level	Proficiency assed by
PO1	Engineering knowledge: Apply the knowledge of		
	mathematics, science, engineering fundamentals, and an	2	Assignments,
	engineering specialization to the solution of complex	3	Mock tests
	engineering problems.		
PO2	Problem analysis: Identify, formulate, review research		
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first principles	1	Assignments, Mock tests
	of mathematics, natural sciences, and engineering		WIOCK tests
	sciences.		
PO3	Design/development of solutions: Design solutions for	2	Assignments,
	complex engineering problems and design system	2	Mock tests

components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental	
safety, and the cultural, societal, and environmental	
considerations.	
PO4 Conduct investigations of complex problems: Use	
research-based knowledge and research methods	
including design of experiments, analysis and - Assign	
interpretation of data, and synthesis of the information to	tests
provide valid conclusions.	
PO5 Modern tool usage: Create, select, and apply appropriate	
techniques, resources, and modern engineering and IT	
tools including prediction and modeling to complex	
engineering activities with an understanding of the	tests
limitations.	
PO6 The engineer and society: Apply reasoning informed by	
the contextual knowledge to assess societal, health,	
safety legal and cultural issues and the consequent Assign	
responsibilities relevant to the professional engineering Mock	tests
practice.	
PO7 Environment and sustainability: Understand the impact	
of the professional engineering solutions in societal and	
environmental contexts, and demonstrate the knowledge	
of, and need for sustainable development.	
PO8 Ethics: Apply ethical principles and commit to	
professional ethics and responsibilities and norms of the	
engineering practice.	•
PO9 Individual and team work: Function effectively as an	
individual, and as a member or leader in diverse teams,	
	-
and in multidisciplinary settings.	
PO10 Communication: Communicate effectively on complex	
engineering activities with the engineering community	
and with society at large, such as, being able to	
comprehend and write effective reports and design	
documentation, make effective presentations, and give	
and receive clear instructions.	
PO11 Project management and finance: Demonstrate	
knowledge and understanding of the engineering and	
management principles and apply these to one's own 1 semi	nars
work, as a member and leader in a team, to manage	
projects and in multidisciplinary environments.	
PO12 Life-long learning: Recognize the need for, and have the Industria	al visits
2 Industria	10100

	M
₹\~\\	
IMPARTING VALUE	BASED EDUCATION
	-51

1			
	prep	aration and ability to engage in independent and life-	
	long	learning in the broadest context of technological	
	chan	ge.	

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

-: None

HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

	Program Specific Outcomes	Level	Proficiency assed by
PSO 1	Talented to analyze, design and implement electrical &		
	electronics systems and deal with the rapid pace of	1	Industrial visits, projects
	industrial innovations and developments		
PSO 2	Skillful to use application and control techniques for		
	research and advanced studies in Electrical and	1	Guest lecturers projects
	Electronics engineering domain		

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

-: None

COURSE CONTENT:

JNTUH SYLLABUS

UNIT - I

MAGNETIC CIRCUITS

Faraday's laws of electromagnetic induction, concept of self and mutual induction- dot convention- coefficient of coupling- composite magnetic circuit analysis of series and parallel magnetic circuits

Network Topology

Definitions, graph, tree basic cutest, basic tie-set matrices for planar networks- Loop and nodal methods of analysis of networks with dependent and independent voltage and current sources- Duality and dual networks.

UNIT II

THREE PHASE AC CIRCUITS

Three-Phase AC Circuits: Phase sequence- Star and delta connection Relation between line and phase voltages and currents in balanced systems. Analyses of balanced and unbalanced 3 phase circuits-Measurement of active and reactive power.

UNIT - III

TRANSIENT ANALYSIS

Transient response of R-L, R-C, R-L -C circuits (Series and parallel combination) for DC and AC excitation-Initial conditions. Solution method using differential equation and Laplace transforms. Transient response of the above circuits for different input such as step ramp pulse and impulse by using Laplace transformation method

UNIT - IV

NETWORK PARAMETERS

Network functions driving point and transfer impedance function network- poles and zeros-necessary conditions for driving point function and for transfer function.

Network Parameters: Two port network parameters - Z, Y, ABCD and hybrid parameters and their relations. Two - port network parameters using transformed variables

UNIT - V

FILTERS

Introduction to filters: Low pass, High pass, Band pass, RC, RL filters constant K and M derived filets and composite filter design.

GATE SYLLABUS:

- 1. Basic Network Analysis and Network Topology
- 2. Initial Conditions; Time Varying Current and Differential Equation; Laplace Transform
- 3. Two-port Network
- 4. Network Theorems
- 5. Sinusoidal Steady State Analysis; Resonance; Power in AC Circuits; Passive Filters
- 6. Basic Network Analysis and Network Topology
- 7. Initial Conditions; Time Varying Current and Differential Equation; Laplace Transform
- 8. Two-port Network
- 9. Network Theorem
- 10. Sinusoidal Steady State Analysis; Resonance; Power in AC Circuits; Passive Filters

IES SYLLABUS:

Circuits elements. Kirchoff's Laws. Mesh and nodal analysis. Network Theorems and applications. Natural response and forced response. Transient response and steady state response for arbitrary inputs. Properties of networks in terms of poles and zeros. Transfer function. Resonant circuits. Threephase circuits. Two-port networks. Elements of two-element network synthesis.

TEXT BOOKS:

- 1. Electric Circuits, A.Chakrabarhty, DhanipatRai& Sons.
- 2. Network analysis, N.C Jagan and C. Lakhminarayana, BS publications.

REFERENCE BOOKS:

- 1. Engineering circuit analysis, William Hayt, Jack E. Kemmerly, S M Durbin, McGraw Hill Companies.
- 2. Electrical Circuits, David A.Bell, Oxford University Press.
- 3. Electric Circuit Analysis, K.S.Suresh Kumar, Pearson Education.
- 4. Circuits, A.Bruce Carlson, Cengage Learning.
- 5. Network Analysis and Circuits, M.Arshad, Infinity Science Press.
- 6. Electrical Circuits an Introduction, KCA Smith & RE Alley, Cambridge University Press.

LESSON PLAN-COURSE SCHEDULE:

Lecture	Week	ТОРІС	Course Learning outcomes	Refere
No.	No.	Torre		nce
		UNIT – 1		
		Faraday's laws of electromagnetic	Understanding the concept of	
1.		induction	Faraday's laws	
2.	1	concept of self and mutual induction	Understanding the concept	
3.		coefficient of coupling	Understanding	
4.		composite magnetic circuit analysis of	Compare and understanding the	T1,T2
1.		series and parallel magnetic circuits	circuits	&R1
5.		Definitions, graph, tree basic cutest	Understanding	
6.		basic tie-set matrices for planar	Understanding and applying the	
0.	2	networks	networks	
7.		Loop and nodal methods	Applying the methods	

NPARTING WILLE BASED EDUCATION	>

8.	,	Review of Unit-I		
9.		Mock Test – I		
		UNIT – 2		
10.		Three-Phase AC Circuits: Phase sequenceStar and delta connection Relation between line and phase voltages and currents in balanced systems	Compare and understand the circuits	
11.	3	Analyses of balanced and unbalanced 3 phase circuits	Understanding the circuits	
12.		Measurement of active and reactive power	Compare and understanding	
13.		problems	Applying	
		Bridge Class # 1		
14.		Problems	Applying the concepts	
15.	4	Measurement of active and reactive power	Understanding and applying	T1,T2 &R1
16.		Problems	Applying	
17.	4	Problems	Applying	
		Bridge Class # 2	Applying the concept and solving	
18.		Problems	Applying the concept and solving	
19.		Problems	Applying the concept and solving	
20.	5	Problems	Applying the concept and solving	
21.		Problems	Applying the concept and solving	
		Bridge Class # 3		
22.		Problems	Applying the concept and solving	
23.		Problems	Applying the concept and solving	T1,T2
24.	6	Problems	Applying the concept and solving	&R1
25.		Problems	Applying the concept and solving	
		Bridge Class # 4		
		I Mid Examinat	ions	
	1	UNIT – 3		Ţ
26.		Transient response of R-L, R-C, R-L -C circuits	Understanding the different transient circuits	
27.	7	Series and parallel combination of Elements	Knowledge of series and parallel elements	T1,T2 &R1
28.		Initial conditions	Understanding	1
29.		Problems	Applying	

TESTA.	
MPARTING WALLE BASED EDUCATION	>

				1
		Bridge Class # 5		
30	8	Solution method using differential	Understanding and applying	
	Ŭ	equation	differential equation	
31		Problems	Applying and solving	T1,T
32	8	Problems	Applying and solving	2&R
33		Problems	Applying and solving	1
		Bridge Class # 6		
34		Transient response of the above circuits for different input	Knowledge of transient response foe different circuits	T1,T
35	9	DC and AC excitation-Initial conditions	Knowledge and understanding	2&R 3
36	1	Transformation method	Applying	
37	1	Problems	Applying and solving	
		Bridge Class # 7		
		UNIT – 4	1	
38		Network functions driving point and transfer impedance function network	Understanding network function	
39	10	poles and zeros- necessary conditions for driving point function and for transfer function.	Analyzing poles and zeros	
40		Network Parameters	Analyzing the parameters	
41	1	Two port network parameters - Z, Y	Analyzing the parameters	
		Bridge Class # 8		
42		Cascaded networks,	Knowledge about cascaded networks	
43	1	Concept of transformed network	Understanding the concept	T1,T2
44	11	Problems	Applying	&R3
45	1	Problems	Applying	
		Bridge Class # 9		
46		2-port network parameters	Understanding the parameters	
47		Problems	Applying	
48	12	Problems	Applying	
49]
50		Problems	Applying]
	12	Mock Test - II		
		UNIT – 5		
51		Network Parameters : Low pass Filter	Knowledg e about low pass filter	
52]	High pass Filter	Knowledge about high pass filter	T1,T2
53	13	Band pass Filter	Knowledge about band pass filter	&R3
54		Problems	Applying	

		Bridge Class # 10	
55		Band elimination	Knowledge of band elimination
56		RC, RL filters	Knowledge of RC,RL filters
57	14	Problems	Applying
58		Problems	Applying
		Bridge Class # 11	
59		filters constant K	Knowledge
60	1.5	M derived filters	Analyze
61	15	Problems	Applying
62		Problems	Applying
		Bridge Class # 12	
63		Problems	Applying
64	16	Problems	Applying
66	10	Revision	
66		Revision	
		Topics beyond the	
		syllabus#11	
		II Mid Examinations	s (Week 18)

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Outcomes		Program Outcomes (PO)								Prog Spec Outco (PS	cific omes			
Co	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	1	1	-	-	-	-	-	-	2	1
CO2	2	2	1	1	1	-	-	-	-	-	-	-	2	2
CO3	2	1	1	1	-	1	-	-	-	-	-	-	1	2
CO4	2	1	1	-	1	1	-	-	-	-	-	-	1	2
CO5	2	1	-	1	1	1	-	-	-	-	-	-	1	2
Avg	2.2	1	0.6	0.6	0.8	0.8	-	-	-	-	-	-	1.4	1.8

1: Slight 2:Moderate 3: Substantial (Low) (Medium) -: None

QUESTION BANK: (As Per JNTU, Hyderabad)

DESCRIPTIVE QUESTIONS:

UNIT-I

LONG ANSWER QUESTIONS

S.NO QUESTION BLOOMS COURSE

		ANTARTICO UNICE MARCO COCCATON			
		TAXANOMY LEVEL	OUTCOME		
1	Coil 1 of a pair of coupled coils has a continuous current of 5 A, and the corresponding fluxes Φ_{11} and Φ_{12} are 0.2 and 0.4 mWb respectively. If the turns are	Applying	3		
	$N_1 = 500$ and $N_2 = 1500$, find L_1 , L_2 , M and k				
2	Two coupled coils of $L_1 = 0.8 \text{ H}$ and $L_2 = 0.2 \text{ H}$ have a	Applying	3		
	coupling coefficient $k = 0.9$. Find the mutual inductance M.				
3	Derive the expression for co - efficient of coupling (k)	Understand and applying	2,3		
4	4. If the lengthof the coil is 40 cm. Find the number of ampere turns necessary to produce a flux density of 0.7Wb/m² in the gap. Neglect the leakage and fringing	Applying	3		
5	Explain self – inductance and mutual – inductance in detail	Knowledge	1		
6	What is an electric circuit? What is a magnetic circuit? Make a comparison between electric circuit and magnetic circuit.	Knowledge	1		
7	State and explain Faraday's laws of electromagnetic induction	Knowledge	1		
8	An iron ring of mean circumference of 1 m is uniformly wound with 400 turns of wire. When a current of 1.2 A is passed through the coil, a flux density of 1.15 Wb/m is produced in the iron. Find the relative permeability of the iron under these circumstances	Applying	3		
9	Explain incidence matrix for given network $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Applying	3		

S.No	Question	Blooms	Course
		Taxanomy Level	Outcome
1	Define Faraday's Law of electromagnetic induction	knowledge	1
2	Explain self induction	knowledge	1
3	Explain mutual induction	knowledge	1
4	Discuss dot convention	knowledge	1
5	Define tree and incidence matrix	knowledge	1
6	Define cut set matrix.	knowledge	1
7	Define tie set matrix.	knowledge	1

UNIT-II LONGANSWER QUESTIONS

S.No	Questions	Blooms Taxanomy Level	Course Outcome
1	Find ϑc (t) at $t = 0$ + while the switching is done from x to y at $t = 0$. As shown in figure below $ \begin{array}{c c} & & & & & & & & & & & & & \\ & & & & & $	Applying	3
2	As shown in figure below represents a parallel RLC circuit where R =0.1, L = 0.5H and C is 1F. Capacitor C has an initial voltage of 12V as per the polarity shownin figure. The switch K is closed at time $t=0$. Obtain $\vartheta(t)$.	Applying	3
3	 a) Derive the expressions for the transient current of RL series circuit when excited by a dc voltage. b) A dc voltage of 100V is applied in the circuit shown in figure below and the switch is kept open. The switch K is closed at t = 0. Find the complete expression for the current. 	Applying	3

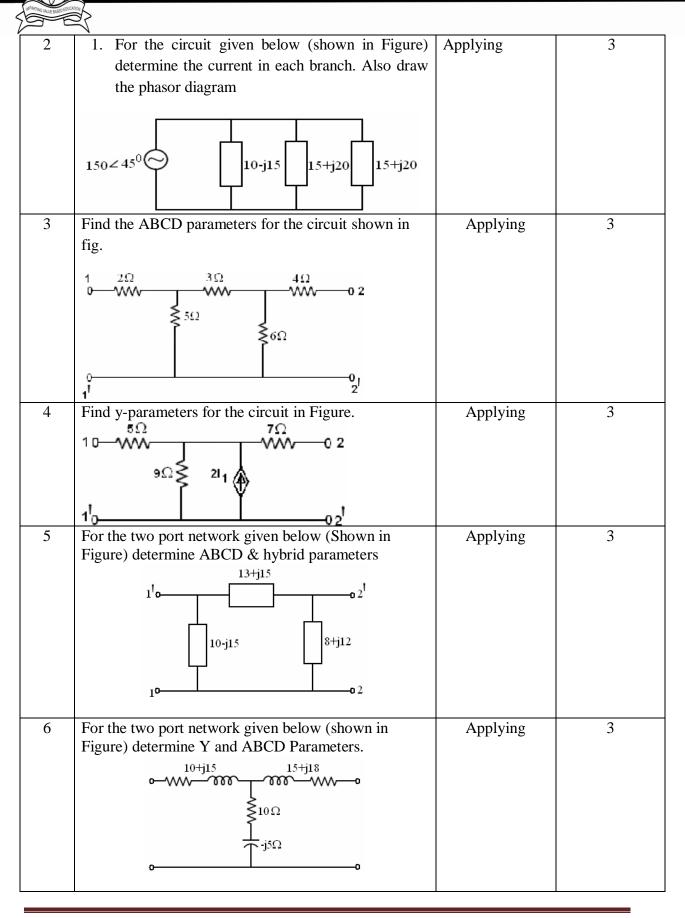
4	 a) Derive the expression for the transient response in an RLC series circuit excited by a DC source. b) A constant voltage is applied to a series RL circuit at t = 0. The voltage across the inductor at t = 3.46 ms is 20 V and 5 V at t = 25 ms. Obtain R if L = 2H. 	Understand and applying	2,3
5	In the circuit given below (shown in Figure) switch 'k' is put in position -1 , for 1 m Sec. and then thrown to position -2 . Find the transient current in both intervals 150V $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	Applying	3
6	Derive the transient response of RLC series circuit with sinusoidal input	understanding	2
7	A sinusoidal voltage of 100 Sin50t is applied to a series circuit of R = 15 and L = 2.5H at t=0 (shown in Figure). By Laplace transform method, determine the current i(t) for all t= 0. Assume zero initial conditions $ V(t)=100 \text{Sin50t} $ $ V(t)=100 \text{Sin50t} $	Applying	3
8	A sinusoidal voltage of 75 Sin30t is applied to a series circuit of $R = 20$ and $L = 1.5H$ at $t = 0$ (shown in Figure). By differential equation method, determine the current i(t) for all $t = 0$. Assume zero initial conditions $ \begin{array}{c} 20 \Omega \\ \text{S} \end{array} $ 1.5H $ \begin{array}{c} 1.5H \\ \text{i(t)} \end{array} $	Applying	3

9	A sinusoidal voltage of $105 \text{Sin}(40t)$ is applied to a series circuit of $R = 25$ and $L = 1.5 \text{H}$ at $t = 0$ (show Figure), by Laplace transform method. Determine the current i(t) for all $t = 0$. Assume zero initial condition $v(t) = \frac{25 \Omega}{105 \text{Sin} 40t}$	vn in he	3
10	Derive the expression for the response of an RLC series circuit for sinusoidal excitation.	understanding	2

S.No	Questions	Blooms Taxanomy Level	Course Outcome
1	Define star and delta networks	knowledge	1
2	Explain the line and phase relation between star and delta networks	knowledge	1
3	Analyze balanced and unbalanced network	understanding	2
4	Describe Measurement of Active power	knowledge	1
5	Describe measurement of reactive power.	knowledge	1

UNIT-III LONGANSWER QUESTIONS:

S.No	Questions	Blooms Taxanomy Level	Course Outcome
1	1. Find the transfer function $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Applying	3
2	Find Y11(s) for a series capacitive network	Applying	3
3	Explain whether the driving point impedance $Z(s) = \frac{s^2 + s + 3}{s^4 + 5s^3 + 6s^2}$ is suitable for representing a passive one port network.	Applying	3


4	A transform voltage is given by-	Applying	3
	3 <i>s</i>		
	$V(s) = \frac{3S}{(s+1).(s+4)}$. Plot the pole-zero in the s-		
	plane and obtain the time domain response.		
5	Explain the restriction on location of poles and zeros in driving point functions.	Understand	2
6	Explain the necessary conditions for transfer functions in a network.	Understand	2
7	Describe about the natural response of a network.	Understand	2
8	How to find the stability of a network function using	Understand and	2,1
	pole-zero concept.	Knowledge	
9	Check the stability of the following system	Applying	3
	expressed of the polynomial		
	$P(s) = s^3 + 2s^2 + 2s + 40.$		
10	The transfer function of a network is given by	Applying	3
	3 <i>s</i>		
	$T(s) = \frac{1}{(s+2).(s^2+2s+2)}$ Plot the pole-zero		
	diagram and obtain T(t).		

S.No	Questions	Blooms Taxanomy Level	Course Outcome
1	Explain RL network	knowledge	1
2	Explain RC network	knowledge	1
3	Explain RLC network for DC excitation	knowledge	1
4	Explain classical method and laplace method of solutions	knowledge	1
5	Explain transient response for inputs such as step and ramp inputs	knowledge	1

UNIT IV

LONG ANSWER QUESTIONS

S.No	Questions	Blooms	Course
		Taxanomy	Outcome
		Level	
1	For the circuit given below (shown in Figure),	Applying	3
	determine current supplied by the Source, total		
	active & reactive powers also draw the phasor		
	diagram.		
	10+j15		
	$200 \angle 45^{\circ}$ $12+j15$ $10+j12$ $15-j25$		

		· · · · · · · · · · · · · · · · · · ·	1
7	For the two port network given below (shown in Figure) determine Z and ABCD parameters.	Applying	3
	□ 15Ω 10Ω 10Ω □ WW WW □ WW □ WW		
	$\lessgtr_{5\Omega}$ $\lessgtr_{15\Omega}$		
	o <u> </u>		
8	For the circuit given below (shown in Figure) determine current supplied by source & power factor.	Applying	3
	$v = 125 \angle 45^0$ $10+j15$ $10-j14$ $15+j20$		
9	(a)Derive expressions for transmission parameters of	Understanding	3
	two two-port networks connected in cascade.		
	(b)Derive expressions for Admittance parameters		
	of two two-port networks connected in parallel		
L		I	

S.No	Questions	Blooms Taxanomy Level	Course Outcome
1	What is transform impedance & transform circuit.	knowledge	1
2	Express y-parameters in terms of h-parameters	knowledge	1
3	Express Z-parameters in terms of Y-parameters.	knowledge	1
4	Derive expressions for ABCD parameters of two two- port networks connected in cascade.	knowledge	1
5	Derive expressions for Impedance parameters of two two-port networks connected in series.	knowledge	1

UNIT V

LONG ANSWER QUESTIONS

S.No	Questions	Blooms Taxanomy Level	Course Outcome
1	Design a symmetrical T attenuator to give 2 dB attenuation to have a characteristic impedance of 150 ohm	Understanding	2
2	Explain the design procedure of the Band pass filter in detail	Understanding	2
3	Explain the design procedure of the High pass filter in	Understanding and applying	2,3

<	IMPARTING VALUE BASED EDU	ORDA -	
		detail K	
	4	Write short notes on	knowledge
		a) Properties of Fourier transform	
		b) Laplace transforms method of solving transient	
		circuits.	
		c) Low pass filter.	
	5	Write short notes on	knowledge
		a)Phase angle spectra b) Fourier transform properties	
	6	Write short notes on	knowledge
		a) Line and phase angle spectra b)Fourier	

a) Fourier transform theorems b)Exponential form of Fourier series c) Transform impedance & Transform

a) Composite filters b) Necessary conditions for transfer

a)Give the analysis for the design of constant K band

b) Design a constant K band elimination filter with cut off frequency 1750 Hz to 4250 Hz and a characteristic

functions c) Properties of Fourier transform.

elimination filter and explain its characteristics

1

1

1

1

2,1

knowledge

knowledge

Understanding

and Knowledge

SHORT ANSWER QUESTIONS

impedance of 250

b) integrals

Write short notes on

Write short notes on

circuits.

7

8

9

S.NO	QUESTIONS	BLOOMS TAXANOMY LEVEL	COURSE OUTCOME
1	Draw the circuit diagram of a Band pass filter.	knowledge	1
2	Draw the circuit diagram of a High pass filter	knowledge	1
3	Explain constant K-type low pass filter	knowledge	1
4	Write the propagation constant for T-section filter	knowledge	1
5	Explain and write the properties of a filter	knowledge	1

OBJECTIVE QUESTIONS: As Per JNTU, Hyderabad

UNIT-1

1.	In the star connected network choose the correct among the following:
	(a) $V_L = V_P$ (b) $V_L = \sqrt{3}V_P$ (c) $V_P = \sqrt{3}V_L$ (d) $V_L = 3V_P$
2.	In the delta connected network choose the correct among the following:
	(a) $V_L = V_P$ (b) $V_L = \sqrt{3}V_P$ (c) $V_P = \sqrt{3}V_L$ (d) $V_L = 3V_P$
3.	In the star connected network choose the correct among the following:
	(a) $I_L = I_P$ (b) $I_L = \sqrt{3}I_P$ (c) $I_P = \sqrt{3}I_L$ (d) $I_L = 3I_P$
4.	In the delta connected network choose the correct among the following:
	(a) $I_L = I_P$ (b) $I_L = \sqrt{3}I_P$ (c) $I_P = \sqrt{3}I_L$ (d) $I_L = 3I_P$
5.	Choose the correct statement for the balanced three phase network:
٠.	a) All the phase voltages are same
	b) All the line voltages are same
	c) All the phase currents are same
	d) All of the above
UN	NIT-2
	Time constant for R-C series network is:
	(a) R/C (b) R^2C (c) RC (d) RC^2
2.	Time constant for R-L series network is:
	(a) L/R (b) R/L (c) RL (d) RL^2
3.	If $R=100\Omega$, $C=10 \mu F$, the time constant for R-C parallel network is:
	(a) 2ms (b) 1ms (c) 5ms (d) 4ms
4.	If $R=10K\Omega$, $L=10H$, the time constant for R-C parallel network is:
	(a) 2ms (b) 1ms (c) 5ms (d) 4ms
5.	For RLC series network, the system will oscillate if:
	(a) Damping ratio greater than 1 (b) Damping ratio less than 1
	(c) Damping ratio equal to 1 (d) Does not depends on damping ratio
	Under steady state condition the capacitor act as
	NIT-3
1.	Choose the correct representation of impedance network function:
	(a) $Z_{12}(s)$ (b) $Z_{22}(s)$ (c) $Z_{11}(s)$ (d) $Z_{21}(s)$
2.	Choose the correct representation of admittance network function:
	(a) $Y_{12}(s)$ (b) $Y_{22}(s)$ (c) $Y_{11}(s)$ (d) $Y_{21}(s)$
3.	The transfer function is given by:
	(a) V_1/V_2 (b) V_2/V_1 (c) I_2/I_1 (d) I_1/I_2
4.	7
	(a) Located on the LHS of s-plane (b) Located on the RHS of s-plane
_	(c) Always stable (d) Cannot be predicted
5.	Poles are:
	(a) Roots of the Numerator of Transfer Function
	(b) Roots of the Denominator of Transfer Function
6	(c) Roots of both (d) Roots of driving point function The poir of terminals is automorily connected to the approxy source which is driving
6.	
7	force of the network so that pair of terminal is known as of network. Because of the similarity of impedance and admittance the two quantities are assigned.
7.	• • •
TIN	one name as VIT -4
1.	In two port networks, the total number of terminals is: (a) 1 (b) 2 (c) 3 (d) 4
	$(u) 1 \qquad (0) 2 \qquad (0) 3 \qquad (u) +$

- 2. Transmission parameter is also known as:
 - (a) Z-parameter (b) Y-parameter (c)ABCD parameter (d) h-parameter
- 3. For Z parameter, condition for symmetry is given as:
 - (a) $Z_{12} = Z_{21}$
- (b) $Z_{22} = Z_{11}$
- (c) $Z_{12} = Z_{22}$ (d) $Z_{11} = Z_{21}$
- 4. For Z parameter, condition for reciprocity is given as:
 - (a) $Z_{12} = Z_{21}$
- (b) $Z_{22} = Z_{11}$
- (c) $Z_{12} = Z_{22}$ (d) $Z_{11} = Z_{21}$
- 5. For Y parameter, condition for symmetry is given as:
 - (a) $Y_{12} = Y_{21}$
- (b) $Y_{22} = Y_{11}$
- (c) $Y_{12} = Y_{22}$ (d) $Y_{11} = Y_{21}$

UNIT-5

- 1. Choose the correct for Band Pass filter:
 - (a) Has only one cut-off frequency
- (b) Has two cut-off frequencies
- (c) Have more than two cut-off frequencies
- (d) None of the above
- 2. Choose the correct for High Pass filter:
 - (a) Has only one cut-off frequency
- (b) Has two cut-off frequencies
- (c) Have more than two cut-off frequencies
- (d) None of the above
- 3. Choose the correct for band stop filter:
 - (a) Has only one cut-off frequency
- (b) Has two cut-off frequencies
- (c) Have more than two cut-off frequencies
- (d) None of the above

- 4. Fourier series is applicable to:
 - (a) All the waveforms
- (b) Only non-periodic waveforms
- (c) Only periodic waveforms
- (d) Only sinusoidal waveforms
- 5. For anti-symmetric periodic signal, Fourier series has:
 - (a) Only even harmonics
- (b) All the harmonics
- (c) No harmonics
- (d) Only odd harmonics
- 6. When r poles or zeros have the same value, the pole or zero is said to be of .
- 7. When the variable s has the value such the network function vanishes, that complex **GATE:**
- 1. In the circuit shown in figure, assuming initial voltage and capacitors and currents through the inductors to be zero at the time of switching (t = 0), then at any time t > 0:
- a). Current increases monotonically with time
- b). Current decreases monotonically with time
- c). Current remains constant at V/R d). Current first increases then decreases
- 2. In figure the switch was closed for a long time before opening at t=0. The voltage V_x at $t = 0^+ is$:
- c)-50V

- 3. In g-parameters, choose the correct one
 - a)V₁& V₂interms of I₁& I₂
- b) I₁& I₂interms of V₁& V₂
- c) V₂& I₁interms of V₁& I₂
- d) V₁& I₁interms of V₂& I₂
- 4. In Z-parameters, choose the correct one

a)V₁& V₂interms of I₁& I₂

b) V₁& I₁interms of V₂&

In ABCD-parameters, choose the correct one

a)V₁& V₂interms of I₁& I₂

b) I_1 & I_2 interms of V_1 & V_2

c) V₁& I₂interms of V₂& I₁

d) V₁& I₁interms of V₂& I₂

WEBSITE ADDRESSES:

- 1. www.jntuworld.com
- 2. http://en.wikipedia.org
- 3. http://nptel.iitm.ac.in/
- 4. www.youtube.com/user/nptelhrd

IIT WEBSITES:

- 1. http://www.iitkgp.ernet.in/
- 2. http://www.iitk.ac.in/
- 3. http://www.**iit**b.ac.in/
- 4. http://www.iitd.ac.in/
- 5. http://www.iitm.ac.in/

PREVIOUS GATE QUESTION PAPERS WEBSITES:

- 1. http://www.engineersinstitute.com/Gate_2012_2013-2014_previous_year_paper_solution.php
- 2. www.aceenggacademy.com
- 3. www.madeeasy.in

ENGINEERING SERVICES WEBSITES:

- 1. www.upsc.gov.in
- 2. www.aceenggacademy.com
- 3. www.madeeasy.in

JOURNALS (NATIONAL & INTERNATIONAL):

- 1. www.ieee.org
- 2. www.worldscientific.com
- 3. www.springer.com
- 4. www.sciencedirect.com

LIST OF TOPICS FOR STUDENT SEMINARS:

- 1. Types of elements and source transformation techniques
- 2. Kirchhoff's laws, current division, voltage division
- 3. Mesh and super mesh analysis, nodal and super nodal analysis Steady state analysis of pa

WEBSITES:

1. Illumination engineering and electric utility services.

URL: http://nptel.ac.in/courses/1008105060/

- 2. Centre for Railways Research at IIT Kharagpur.
- 3. Nptel.ac.in/courses/108105058/